Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Behav Neurosci ; 16: 838122, 2022.
Article in English | MEDLINE | ID: mdl-35368297

ABSTRACT

Depression affects women nearly twice as frequently as men. In contrast, rodent models of depression have shown inconsistent results regarding sex bias, often reporting more depression-like behaviors in males. This sex discrepancy in rodents modeling depression may rely on differences in the baseline activity of males and females in depression-related behavioral tests. We previously showed that the baseline despair and anhedonia behaviors, major endophenotypes of depression, are not sex biased in young adolescent wild-type mice of C57BL/6N, DBA/2, and FVB/N strains. Since the prevalence of depression in women peaks in their reproductive years, we here investigated sex differences of the baseline depression-like behaviors in adult mice using these three strains. Similar to the results in young mice, no difference was found between adult male and female mice in behavioral tests measuring despair in both tail suspension and forced swim tests, and anhedonia in the sucrose preference test. We then extended our study and tested apathy, another endophenotype of depression, using the splash test. Adult male and female mice showed significantly different results in the baseline apathy-like behaviors depending on the investigated strain. This study dissects the complex sex effects of different depression endophenotypes, stresses the importance of considering strain, and puts forward a hypothesis of the inconsistency of results between different laboratories investigating rodent models of depression.

2.
Sci Rep ; 11(1): 21372, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725364

ABSTRACT

The automatization of behavioral tests assessing motor activity in rodent models is important for providing robust and reproducible results and evaluating new therapeutics. The CatWalk system is an observer-independent, automated and computerized technique for the assessment of gait performance in rodents. This method has previously been used in adult rodent models of CNS-based movement disorders such as Parkinson's and Huntington's diseases. As motor and gait abnormalities in neuropsychiatric disorders are observed during infancy and adolescence, it became important to validate the CatWalk XT in the gait analysis of adolescent mice and unravel factors that may cause variations in gait performance. Three adolescent wild-type inbred mouse strains, C57BL/6N, DBA/2 and FVB/N, were tested using the CatWalk XT (Version 10.6) for suitable detection settings to characterize several gait parameters at P32 and P42. The same detection settings being suitable for C57BL/6N and DBA/2 mice allowed a direct comparison between the two strains. On the other hand, due to their increased body weight and size, FVB/N mice required different detection settings. The CatWalk XT reliably measured the temporal, spatial, and interlimb coordination parameters in the investigated strains during adolescence. Additionally, significant effects of sex, development, speed and body weight within each strain confirmed the sensitivity of motor and gait functions to these factors. The CatWalk gait analysis of rodents during adolescence, taking the effect of age, strain, sex, speed and body weight into consideration, will decrease intra-laboratory discrepancies and increase the face validity of rodent models of neuropsychiatric disorders.


Subject(s)
Gait Analysis/methods , Gait , Age Factors , Animals , Body Weight , Female , Male , Mice, Inbred C57BL , Mice, Inbred DBA , Sex Factors
3.
Pharmaceutics ; 13(11)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34834319

ABSTRACT

Intranasal drug delivery is a promising approach for the delivery of drugs to the CNS, but too heterogenous, unprecise delivery methods without standardization decrease the quality of many studies in rodents. Thus, the lack of a precise and region-specific application technique for mice is a major drawback. In this study, a previously developed catheter-based refined technique was validated against the conventional pipette-based method and used to specifically reach the olfactory or the respiratory nasal regions. This study successfully demonstrated region-specific administration at the olfactory mucosa resulting in over 20% of the administered fluorescein dose in the olfactory bulbs, and no peripheral bioactivity of insulin detemir and Fc-dependent uptake of two murine IgG1 (11C7 and P3X) along the olfactory pathway to cortex and hippocampus. An scFv of 11C7 showed hardly any uptake to the CNS. Elimination was dependent on the presence of the IgG's antigen. In summary, it was successfully demonstrated that region-specific intranasal administration via the olfactory region resulted in improved brain targeting and reduced peripheral targeting in mice. The data are discussed with regard to their clinical potential.

4.
Front Behav Neurosci ; 15: 759574, 2021.
Article in English | MEDLINE | ID: mdl-34690714

ABSTRACT

Depression is a major neuropsychiatric disorder, decreasing the ability of hundreds of millions of individuals worldwide to function in social, academic, and employment settings. Beyond the alarming public health problem, depression leads to morbidity across the entire age including adolescence and adulthood. Modeling depression in rodents has been used to understand the pathophysiological mechanisms behind this disorder and create new therapeutics. Although women are two times more likely to be diagnosed with depression compared to men, behavioral experiments on rodent models of depression are mainly performed in males based on the assumption that the estrous cycles in females may affect the behavioral outcome and cause an increase in the intrinsic variability compared to males. Still, the inclusion of female rodents in the behavioral analysis is mandatory to establish the origin of sex bias in depression. Here, we investigated the baseline depression-like behaviors in male and female mice of three adolescent wild-type inbred strains, C57BL/6N, DBA/2, and FVB/N, that are typically used as background strains for mouse models of neuropsychiatric disorders. Our experiments, performed at two different developmental stages during adolescence (P22-P26 and P32-P36), revealed strain but no sex differences in a set of depression-related tests, including tail suspension, sucrose preference and forced swim tests. Additionally, the 10-day interval during this sensitive period uncovered a strong impact on the behavioral outcome of C57BL/6N and FVB/N mice, highlighting a significant effect of maturation on behavioral patterns. Since anxiety-related behavioral tests are often performed together with depression tests in mouse models of neuropsychiatric disorders, we extended our study and included hyponeophagia as an anxiety test. Consistent with a previous study revealing sex differences in other anxiety tests in adolescent mice, male and females mice behaved differently in the hyponeophagia test at P27. Our study gives insight into the behavioral experiments assessing depression and stresses the importance of considering strain, age and sex when evaluating neuropsychiatric-like traits in rodent models.

5.
Sci Rep ; 11(1): 6497, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33753800

ABSTRACT

Neuropsychiatric disorders are often associated with motor and coordination abnormalities that have important implications on the etiology, pathophysiology, and management of these disorders. Although the onset of many neuropsychiatric disorders including autism spectrum disorder, schizophrenia, and attention-deficit hyperactivity disorder emerges mainly during infancy and adolescence, most of the behavioral studies in mice modeling neuropsychiatric phenotypes are performed in adult animals, possibly missing valuable phenotypic information related to the effect of synaptic maturation during development. Here, we examined which behavioral tests assessing both motor and coordination functions can be performed in mice at two different adolescent stages. As strain and sex affect mouse behavior, our experiments covered both male and female mice of three inbred wild-type strains, C57BL/6N, DBA/2, and FVB/N. Adolescent mice of both postnatal days (P)22-30 and P32-40 developmental stages were capable of mastering common motor and coordination tests. However, results differed significantly between strains and sexes. Moreover, the 10-day interval between the two tested cohorts uncovered a strong difference in the behavioral results, confirming the significant impact of maturation on behavioral patterns. Interestingly, the results of distinct behavioral experiments were directly correlated with the weight of mice, which may explain the lack of reproducibility of some behavioral results in genetically-modified mice. Our study paves the way for better reproducibility of behavioral tests by addressing the effect of the developmental stage, strain, sex, and weight of mice on achieving the face validity of neuropsychiatric disorder-associated motor dysfunctions.


Subject(s)
Biological Variation, Population , Disease Models, Animal , Movement , Nervous System Diseases/genetics , Animals , Female , Genotype , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Nervous System Diseases/physiopathology , Reproducibility of Results
6.
Sci Rep ; 10(1): 11263, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647155

ABSTRACT

In humans, infancy and adolescence are associated with major changes in synaptic functions and ongoing maturation of neural networks, which underlie the major behavioral changes during these periods. Among adult cases with neuropsychiatric disorders including autism spectrum disorder, schizophrenia, attention deficit hyperactivity, and bipolar disorders, 50% have developed behavioral symptoms and received a diagnosis before 15 years of age. However, most of the behavioral studies in mice modeling neuropsychiatric phenotypes are performed in adult animals, missing valuable phenotypic information related to the effect of synaptic maturation during development. Here, we explored which behavioral experiments assessing neuropsychiatric phenotypes can be performed during a specific window of development in adolescent male and female C57BL/6N, DBA/2, and FVB/N mice that are typically used as background strains for generating genetically-modified mouse models. The three wild-type strains were evaluated across anxiety, social behaviors, and cognitive functions in order to cover the main behavioral impairments that occur in neuropsychiatric disorders. During adolescence, the three strains displayed significant differences under certain behavioral paradigms. In addition, C57BL/6N and FVB/N, but not DBA/2 mice revealed some sex-related differences. Our results provide new insights into discrete behaviors during development and emphasize the crucial importance of the genetic background, sex, and experimental settings in the age-dependent regulation of different behaviors.


Subject(s)
Anxiety/genetics , Behavior Rating Scale , Behavior, Animal , Disease Models, Animal , Animals , Anxiety/physiopathology , Autism Spectrum Disorder/physiopathology , Cognition , Fear , Female , Male , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Phenotype , Sex Factors , Social Behavior , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...