Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Small ; 20(26): e2309905, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38258408

ABSTRACT

The rare combination of metallic conductivity and surface redox activity enables 2D MXenes as versatile charge storage hosts for the design of high-rate electrochemical energy storage devices. However, high charge density metal ions including but not limited to Ca+2 and Mg+2 pose challenges such as sluggish solid-state diffusion and also inhibiting the charge transfer across electrode-electrolyte interfaces. In this work, free-standing hybrid electrode architectures based on 2D titanium carbide-cationic perylene diimide (Ti3C2Tx@cPDI) via supramolecular self-assembly are developed. Secondary bonding interactions such as dipole-dipole and hydrogen bonding between Ti3C2Tx and cPDI are investigated by zeta potential and Fourier-transformed infrared (FTIR) spectroscopy . Ti3C2Tx@cPDI free-standing electrodes show typical volumetric capacitance up to 260 F cm-3 in Mg2+ and Ca2+ aqueous electrolytes at charging times scales from 3 minutes to a few seconds. Three-dimensional (3D) Bode maps are constructed to understand the charge storage dynamics of Ti3C2Tx@cPDI hybrid electrode in an aqueous Ca-ion electrolyte. ,Pseudocapacitance is solely contributed by the nanoscale distribution of redox-active cPDI supramolecular polymers across 2D Ti3C2Tx. This study opens avenues for the design of a wide variety of MXene@redox active organic charge hosts for high-rate pseudocapacitive energy storage devices.

2.
ACS Appl Mater Interfaces ; 13(49): 59104-59114, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34870963

ABSTRACT

Two-dimensional (2D) transition-metal carbides (MXenes) are emerging as promising materials for a wide range of applications owing to their intriguing electrical, optical, and optoelectronic properties. However, the modulation of metallic Ti3C2Tx MXene electronic properties is the key challenge to fabricate functional nanoelectronic devices. Here, we demonstrate a solution-processable route to fabricate Ti3C2Tx MXene/CuI nanoparticle heterointerfaces by employing a layer-by-layer assembly process. The charge transfer at the heterointerfacial assembly is monitored qualitatively from the quenched photoluminescence emission of CuI. The stable electrical conductivity and consistent Raman spectra of the 3-LBL assembly (three sequential stacks of CuI/MXene) signify the oxidation stability of Ti3C2Tx thin films even after exposure to the ambient environment for 2 months. Furthermore, the 3-LBL assembly exhibited a three-dimensional (3D) variable-range hopping-based electrical conduction in the temperature range 2 ≤ T < 100 K, contrary to the weak localized transport phenomenon in Ti3C2Tx MXene. The difference in charge transport mechanism is supported by distinct magnetoresistance (MR) of the Ti3C2Tx MXene (negative MR, -0.4%) and 3-LBL assembly (positive MR, 1.6%). Therefore, the modulated electrical transport and superior oxidation stability of the Ti3C2Tx MXene in the 3-LBL assembly have the potential to develop next-generation optoelectronic and memory devices.

3.
ACS Nano ; 15(12): 18742-18776, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34793674

ABSTRACT

Rapid progress on developing smart materials and design of hybrids is motivated by pressing challenges associated with energy crisis and environmental remediation. While emergence of versatile classes of nanomaterials has been fascinating, the real excitement lies in the design of hybrid materials with tunable properties. Metal-organic frameworks (MOFs) are the key materials for gas sorption and electrochemical applications, but their sustainability is challenged by limited chemical stability, poor electrical conductivity, and intricate, inaccessible pores. Despite tremendous efforts towards improving the stability of MOF materials, little progress has made researchers inclined toward developing hybrid materials. MXenes, a family of two-dimensional transition-metal carbides, nitrides and carbonitrides, are known for their compositional versatility and formation of a range of structures with rich surface chemistry. Hybridization of MOFs with functional layered MXene materials may be beneficial if the host structure provides appropriate interactions for stabilizing and improving the desired properties. Recent efforts have focused on integrating Ti3C2Tx and V2CTx MXenes with MOFs to result in hybrid materials with augmented electrochemical and physicochemical properties, widening the scope for emerging applications. This review discusses the potential design strategies of MXene@MOF hybrids, attributes of tunable properties in the resulting hybrids, and their applications in water treatment, sensing, electrochemical energy storage, smart textiles, and electrocatalysis. Comprehensive discussions on the recent efforts on rapidly evolving MXene@MOF materials for various applications and potential future directions are highlighted.

4.
Nanoscale ; 12(26): 14204-14212, 2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32608430

ABSTRACT

Two-dimensional transition metal carbides, nitrides and carbonitrides, popular by the name MXenes, are a promising class of materials as they exhibit intriguing optical, optoelectronic and electrochemical properties. Taking advantage of their metallic conductivity and hydrophilicity, titanium carbide MXenes (Ti3C2Tx and others) are used to fabricate solution processable transparent conducting electrodes (TCEs) for the design of three-electrode electrochromic cells. However, the tunable electrochromic behavior of various titanium-based MXene compositions across the entire visible spectrum has not yet been demonstrated. Here, we investigate the intrinsic electrochromic properties of titanium-based MXenes, Ti3C2Tx, Ti3CNTx, Ti2CTx, and Ti1.6Nb0.4CTx, where individual MXenes serve as a transparent conducting, electrochromic, and plasmonic material layer. Plasmonic extinction bands for Ti3C2Tx, Ti2CTx and Ti1.6Nb0.4CTx are centered at 800, 550 and 480 nm, which are electrochemically tunable to 630, 470 and 410 nm, respectively, whereas Ti3CNTx shows a reversible change in transmittance in the wide visible range. Additionally, the switching rates of MXene electrodes with no additional transparent conductor electrodes are estimated and correlated with the respective electrical figure of merit values. This study demonstrates that MXene-based electrochromic cells are tunable in the entire visible spectrum and suggests the potential of the MXene family of materials in optoelectronic, plasmonic, and photonic applications, such as tunable visible optical filters and modulators, to name a few.

5.
Chem Commun (Camb) ; 56(45): 6090-6093, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32352463

ABSTRACT

Two-dimensional transition metal carbides and/or nitrides (MXenes) have shown promise in developing electrochemical storage of metal ions within conductive galleries due to redox reactions with transition metal atoms. Here, effect of surface chemistry on electrochemical storage of sodium ions within MXene interlayers is investigated by etching Ti3AlC2 MAX using different etchants - HF, HF/HCl, and HF/H2SO4.

6.
Angew Chem Int Ed Engl ; 58(49): 17849-17855, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31574196

ABSTRACT

MXenes are a class of two-dimensional (2D) transition metal carbides, nitrides and carbonitrides that have shown promise for high-rate pseudocapacitive energy storage. However, the effects that irreversible oxidation have on the surface chemistry and electrochemical properties of MXenes are still not understood. Here we report on a controlled anodic oxidation method which improves the rate performance of titanium carbide MXene (Ti3 C2 Tx, Tx refers to -F, =O, -Cl and -OH) electrodes in acidic electrolytes. The capacitance retention at 2000 mV s-1 (with respect to the lowest scan rate of 5 mV s-1 ) increases gradually from 38 % to 66 % by tuning the degree of anodic oxidation. At the same time, a loss in the redox behavior of Ti3 C2 Tx is evident at high anodic potentials after oxidation. Several analysis methods are employed to reveal changes in the structure and surface chemistry while simultaneously introducing defects, without compromising electrochemically active sites, are key factors for improving the rate performance of Ti3 C2 Tx . This study demonstrates improvement of the electrochemical performance of MXene electrodes by performing a controlled anodic oxidation.

7.
Small ; 14(44): e1802864, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30286277

ABSTRACT

A simple and generic strategy is proposed to pattern thin films deposited by a solution processable route. A soft approach based on an automated scalpel technique is developed to engrave thin films in a single step for sculpting functional planar devices. MXenes-the emerging family of 2D transition metal carbides and nitrides-combine metallic conductivity and hydrophilicity, enabling solution processing of transparent conducting electrodes (TCEs) under ambient conditions. Scalable dip coating is employed to process titanium carbide, Ti3 C2 , MXene thin films with excellent optoelectronic properties, achieving electrical Figure of merit up to 14. Automated scalpel engraving is adopted to fabricate transparent and semi-transparent MXene microsupercapacitors in a single step, hitherto not reported. Combining TCE and pseudocapacitive characteristics, MXene devices show excellent capacitive storage capabilities at high rates, without the aid of external metal current collectors. This technique allows for maskless patterning of solution processed thin films without losing intrinsic physicochemical properties and can be extended to fabricate heterostructured hybrid devices out of solution processable materials.

8.
ACS Omega ; 3(10): 12489-12494, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-31457980

ABSTRACT

MXenes are a class of two-dimensional (2D) transition-metal carbides and nitrides that are currently at the forefront of 2D materials research. In this study, we demonstrate the use of metallically conductive free-standing films of 2D titanium carbide (MXene) as current-collecting layers (conductivity of ∼8000 S/cm, sheet resistance of 0.5 Ω/sq) for battery electrode materials. Multilayer Ti3C2T x (T x : surface functional groups -O, -OH, and -F) is used as an anode material and LiFePO4 as a cathode material on 5 µm MXene films. Our results show that the capacities and rate performances of electrode materials using Ti3C2T x MXene current collectors match those of conventional Cu and Al current collectors, but at significantly reduced device weight and thickness. This study opens new avenues for developing MXene-based current collectors for improving volumetric and gravimetric performances of energy-storage devices.

9.
ACS Appl Mater Interfaces ; 8(20): 12748-55, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27145832

ABSTRACT

In this study, we investigate the frequency response of micro-pseudocapacitors based on conducting polymer electrodes such as poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole, and polyaniline. It is shown that by proper choice of polymeric material and device structure, miniaturized micro-pseudocapacitors can match the frequency response of commercial bulky electrolytic capacitors. Specifically, we show that PEDOT-based micro-pseudocapacitors exhibit phase angle of -80.5° at 120 Hz, which is comparable to commercial bulky electrolytic capacitors, but with an order of magnitude higher capacitance density (3 FV/cm(3)). The tradeoff between the areal capacitance (CA) and frequency response in the two-dimensional architecture (CA = 0.15 mF/cm(2), phase angle of -80.5° at 120 Hz) is improved by designing three-dimensional thin-film architecture (CA = 1.3 mF/cm(2), phase angle of -60° at 120 Hz). Our work demonstrates that fast frequency response can be achieved using electroactive polymer electrodes.

10.
Chem Commun (Camb) ; 51(52): 10494-7, 2015 Jul 04.
Article in English | MEDLINE | ID: mdl-26033194

ABSTRACT

We report the successful fabrication of a micro-pseudocapacitor based on ternary nickel cobalt sulfide for the first time, with performance substantially exceeding that of previously reported micro-pseudocapacitors based on binary sulfides. The CoNi2S4 micro-pseudocapacitor exhibits a maximum energy density of 18.7 mW h cm(-3) at a power density of 1163 mW cm(-3), and opens up an avenue for exploring a new family of ternary oxide/sulfide based micro-pseudocapacitors.

11.
ACS Appl Mater Interfaces ; 6(9): 6147-63, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24697666

ABSTRACT

Scanning probe techniques scanning tunneling microscopy (STM) and atomic force microscopy (AFM) have emerged as unique local probes for imaging, manipulation, and modification of surfaces at the nanoscale. Exercising the fabrication of atomic and nansocale devices with desired properties have demanded rapid development of scanning probe based nanolithographies. Dip pen nanolithography (DPN) and local anodic oxidation (LAO) have been widely employed for fabricating functional patterns and prototype devices at nanoscale. This review discusses the progress in AFM bias lithography with focus on nanocarbon species on which many functional quantum device structures have been realized using local electrochemical and electrostatic processes. As water meniscus is central to AFM bias lithography, the meniscus formation, estimation and visualization is discussed briefly. A number of graphene-based nanodevices have been realized on the basis AFM bias lithography in the form of nanoribbons, nanorings and quantum dots with sufficiently small dimensions to show quantum phenomena such as conductance fluctuations. Several studies involving graphitic surfaces and carbon nanotubes are also covered. AFM based scratching technique is another promising approach for the fabrication of nanogap electrodes, important in molecular electronics.

12.
Nanotechnology ; 25(15): 155304, 2014 Apr 18.
Article in English | MEDLINE | ID: mdl-24651210

ABSTRACT

In this work, we report the impact of the interaction and dynamics of increasing ambient water adlayers on etch patterns on a hydrophobic highly oriented pyrolytic graphite (HOPG) surface obtained using atomic force microscopy (AFM) voltage nanolithography in contact mode by applying a positive bias to the sample. The changes in the dimensions of the etch patterns were investigated as a function of the increasing number of water adlayers present on the HOPG, which is varied by changing the time interval since HOPG cleavage. Changes in the width of the etch patterns and the surrounding water droplets were monitored with time, using intermittent-contact-mode AFM. Electrostatic force microscopy (EFM) has been employed to study the charged nature of the etch patterns and the neighboring water film with time. The width of the etch patterns made on freshly cleaved HOPG shows an increase of ∼33% over 48 h, whereas nine-day-old cleaved HOPG shows a 79% increase over the same period. No changes in the dimensions are observed while imaging in a nitrogen atmosphere soon after lithography. In ambient conditions, the EFM phase shift of the patterns shows a large change of ∼84-88% over 30 h. This study demonstrates the effect of the stored electrostatic energy of a polarized ice-like water adlayer, resulting in changes in the dimensions of the etch patterns long after lithography, whereas liquid-like water droplets do not affect the etch patterns.


Subject(s)
Graphite/chemistry , Microscopy, Atomic Force , Water/chemistry , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force/methods , Static Electricity , Surface Properties
13.
Lab Chip ; 13(15): 2866-73, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23753048

ABSTRACT

Paper based electronics have been rapidly growing in recent years. Drawing with a pencil on paper is perhaps the simplest and easiest way of establishing graphitic circuitry in a solvent-free manner, which in the post-graphene years, has attracted an unusual interest. Here in this focus article, we highlight the recent efforts in the literature employing pencil drawings in various ways including sensors, microfluidics, energy storage and microanalytical devices. Even active devices such as piezo and chemiresistive devices as well as field effect transistors have been realised by utilizing pencil-traces. Pencil-on-paper may offer a viable route for developing lab-on-paper applications through suitable integration of the passive and active roles of the pencil-trace.

14.
Phys Chem Chem Phys ; 15(21): 8367-72, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23620088

ABSTRACT

We report the fabrication of Resistor-Capacitor (RC) filters and field effect transistors (FETs) based on pencil drawings on paper, which contain turbostratic graphite crystallites as evidenced from Raman analysis. Pencil drawings have been employed as resistor and an ion gel, 1-butyl-3-methylimidazolium octyl sulfate mixed with polydimethylsiloxane (PDMS) as dielectric, for the fabrication of RC filters with a cut-off frequency of 9 kHz. With ion gel as gate dielectric, an ambipolar electric field effect has been obtained from the pencil-trace at low operating voltages. The carrier mobilities were found to be ∼106 and 59 cm(2) V(-1) s(-1) for holes and electrons, respectively. The mobility value showed only 15% variation among the devices tested, truly remarkable given the simplicity of the fabrication process.

15.
Nanoscale ; 5(1): 381-9, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23175422

ABSTRACT

We report a comparative study of the performance of infrared (IR) photoconductive and bolometric detectors fabricated from few layer graphene (FLG) to graphitic films obtained by different methods. FLG films grown directly on insulating substrates with the aid of residual hydrocarbons and polymethylmethacrylate (PMMA) carbon sources show an IR photoresponse of 73% which is far higher compared to the FLG films (6-14%) obtained by CVD and Scotch tape methods. The photoconductive nature of FLG films is due to generation of photoexcited charge carriers. On the other hand, the photoresponse of the bulk graphitic films is bolometric in nature where the resistance changes are due to thermal effects. The IR photoresponse from these graphitic films is correlated with the Raman peak intensities which are very sensitive to the nature of the FLG.


Subject(s)
Conductometry/methods , Graphite/chemistry , Graphite/radiation effects , Membranes, Artificial , Photometry/methods , Radiometry/methods , Electric Conductivity , Infrared Rays , Materials Testing
16.
Nanotechnology ; 23(42): 425301, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-23036939

ABSTRACT

We describe a transfer-free method for the fabrication of nanocrystalline graphene (nc-graphene) on SiO(2) substrates directly from patterned carbonaceous deposits. The deposits were produced from the residual hydrocarbons present in the vacuum chamber without any external source by using an electron beam induced carbonaceous deposition (EBICD) process. Thermal treatment under vacuum conditions in the presence of Ni catalyst transformed the EBIC deposit into nc-graphene patterns, confirmed using Raman and TEM analysis. The nc-graphene patterns have been employed as an active p-type channel material in a field effect transistor (FET) which showed a hole mobility of ~90 cm(2) V(-1) s(-1). The nc-graphene also proved to be suitable material for IR detection.

17.
ACS Appl Mater Interfaces ; 4(2): 1030-6, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22239561

ABSTRACT

Electron beam-induced carbonaceous deposition (EBICD) derived from residual hydrocarbons in the vacuum chamber has many fascinating properties. It is known to be chemically complex but robust, structurally amorphous, and electrically insulating. The present study is an attempt to gain more insight into its chemical and electrical nature based on detailed measurements such as Raman, XPS, TEM, and electrical. Interestingly, EBIC patterns are found to be blue fluorescent when excited with UV radiation, a property which owes much to sp(2) carbon clusters amidst sp(3) matrix. Temperature-dependent Raman and electrical measurements have confirmed the graphitization of the EBICD through the decomposition of functional groups above 300 °C. Finally, graphitized EBIC patterns have been employed as active p-type channel material in the field-effect transistors to obtain mobilities in the range of 0.2-4 cm(2)/V s.

18.
Nanotechnology ; 22(24): 245302, 2011 Jun 17.
Article in English | MEDLINE | ID: mdl-21508457

ABSTRACT

Electrochemical oxidation and etching of highly oriented pyrolytic graphite (HOPG) has been achieved using biased atomic force microscopy (AFM) lithography, allowing patterns of varying complexity to be written into the top layers of HOPG. The graphitic oxidation process and the trench geometry after writing were monitored using intermittent contact mode AFM. Electrostatic force microscopy reveals that the isolated mesoscopic islands formed during the AFM lithography process become positively charged, suggesting that they are laterally isolated from the surrounding HOPG substrate. The electrical transport studies of these laterally isolated finite-layer graphitic islands enable detailed characterization of electrical conduction along the c-direction and reveal an unexpected stability of the charged state. Utilizing conducting-atomic force microscopy, the measured I(V) characteristics revealed significant non-linearities. Micro-Raman studies confirm the presence of oxy functional groups formed during the lithography process.

SELECTION OF CITATIONS
SEARCH DETAIL
...