Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(11): e22207, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38053873

ABSTRACT

Visualisation of cardiac fibrillation plays a very considerable role in cardiophysiological study and clinical applications. One of the ways to obtain the image of these phenomena is the registration of mechanical displacement fields reflecting the track from electrical activity. In this work, we read these fields using cross-correlation analysis from the video of open pig's epicardium at the start of fibrillation recorded with electrocardiogram. However, the quality of obtained displacement fields remains low due to the weak pixels heterogeneity of the frames. It disables to see more clearly such interesting phenomena as mechanical vortexes that underline the mechanical dysfunction of fibrillation. The applying of chemical or mechanical markers to solve this problem can affect the course of natural processes and falsify the results. Therefore, we developed a novel scheme of an unsupervised deep neural network that is based on the state-of-art positional coding technology for a multilayer perceptron. This network enables to generate a couple of frames with a more heterogeneous pixel texture, that is more suitable for cross-correlation analysis methods, from two consecutive frames. The novel network scheme was tested on synthetic pairs of images with different texture heterogeneity and frequency of displacement fields and also it was compared with different filters on our cardiac tissue image dataset. The testing showed that the displacement fields obtained with our method are closer to the ground truth than those which were computed only with the cross-correlation analysis in low contrast images case where filtering is impossible. Moreover, our model showed the best results comparing with the one of the popular filter CLAHE on our dataset. As a result, using our approach, it was possible to register more clearly a mechanical vortex on the epicardium at the start of fibrillation continuously for several milliseconds for the first time.

2.
Front Physiol ; 14: 1187956, 2023.
Article in English | MEDLINE | ID: mdl-37362439

ABSTRACT

Background: Populations of in silico electrophysiological models of human cardiomyocytes represent natural variability in cell activity and are thoroughly calibrated and validated using experimental data from the human heart. The models have been shown to predict the effects of drugs and their pro-arrhythmic risks. However, excitation and contraction are known to be tightly coupled in the myocardium, with mechanical loads and stretching affecting both mechanics and excitation through mechanisms of mechano-calcium-electrical feedback. However, these couplings are not currently a focus of populations of cell models. Aim: We investigated the role of cardiomyocyte mechanical activity under different mechanical conditions in the generation, calibration, and validation of a population of electro-mechanical models of human cardiomyocytes. Methods: To generate a population, we assumed 11 input parameters of ionic currents and calcium dynamics in our recently developed TP + M model as varying within a wide range. A History matching algorithm was used to generate a non-implausible parameter space by calibrating the action potential and calcium transient biomarkers against experimental data and rejecting models with excitation abnormalities. The population was further calibrated using experimental data on human myocardial force characteristics and mechanical tests involving variations in preload and afterload. Models that passed the mechanical tests were validated with additional experimental data, including the effects of drugs with high or low pro-arrhythmic risk. Results: More than 10% of the models calibrated on electrophysiological data failed mechanical tests and were rejected from the population due to excitation abnormalities at reduced preload or afterload for cell contraction. The final population of accepted models yielded action potential, calcium transient, and force/shortening outputs consistent with experimental data. In agreement with experimental and clinical data, the models demonstrated a high frequency of excitation abnormalities in simulations of Dofetilide action on the ionic currents, in contrast to Verapamil. However, Verapamil showed a high frequency of failed contractions at high concentrations. Conclusion: Our results highlight the importance of considering mechanoelectric coupling in silico cardiomyocyte models. Mechanical tests allow a more thorough assessment of the effects of interventions on cardiac function, including drug testing.

3.
Front Physiol ; 14: 1123609, 2023.
Article in English | MEDLINE | ID: mdl-36969594

ABSTRACT

Although fibroblasts are about 5-10 times smaller than cardiomyocytes, their number in the ventricle is about twice that of cardiomyocytes. The high density of fibroblasts in myocardial tissue leads to a noticeable effect of their electromechanical interaction with cardiomyocytes on the electrical and mechanical functions of the latter. Our work focuses on the analysis of the mechanisms of spontaneous electrical and mechanical activity of the fibroblast-coupled cardiomyocyte during its calcium overload, which occurs in a variety of pathologies, including acute ischemia. For this study, we developed a mathematical model of the electromechanical interaction between cardiomyocyte and fibroblasts and used it to simulate the impact of overloading cardiomyocytes. In contrast to modeling only the electrical interaction between cardiomyocyte and fibroblasts, the following new features emerge in simulations with the model that accounts for both electrical and mechanical coupling and mechano-electrical feedback loops in the interacting cells. First, the activity of mechanosensitive ion channels in the coupled fibroblasts depolarizes their resting potential. Second, this additional depolarization increases the resting potential of the coupled myocyte, thus augmenting its susceptibility to triggered activity. The triggered activity associated with the cardiomyocyte calcium overload manifests itself in the model either as early afterdepolarizations or as extrasystoles, i.e., extra action potentials and extra contractions. Analysis of the model simulations showed that mechanics contribute significantly to the proarrhythmic effects in the cardiomyocyte overloaded with calcium and coupled with fibroblasts, and that mechano-electrical feedback loops in both the cardiomyocyte and fibroblasts play a key role in this phenomenon.

4.
Prog Biophys Mol Biol ; 159: 46-57, 2021 01.
Article in English | MEDLINE | ID: mdl-32846154

ABSTRACT

Cardiac fibroblasts are interspersed within mammalian cardiac tissue. Fibroblasts are mechanically passive; however, they may communicate electrically with cardiomyocytes via gap junctions and thus affect the electrical and mechanical activity of myocytes. Several in-silico studies at both cellular (0D) and ventricular (3D) levels analysed the effects of fibroblasts on the myocardial electrical function. However, none of them addressed possible effects of fibroblast-myocyte electrical coupling to cardiomyocyte mechanical activity. In this paper, we propose a mathematical model for studying both electrical and mechanical responses of the human cardiomyocyte to its electrotonic interaction with cardiac fibroblasts. Our simulations have revealed that electrotonic interaction with fibroblasts affects not only the mechanical activity of the cardiomyocyte, comprising either moderate or significant reduction of contractility, but also the mechano-calcium and mechano-electric feedback loops, and all these effects are enhanced as the number of coupled fibroblasts is increased. Obtained results suggest that moderate values of the myocyte-fibroblast gap junction conductance (less than 1 nS) can be attributed to physiological conditions, contrasting to the higher values (2 nS and higher) proper rather for pathological situations (e.g. for infarct and/or border zones), since all mechanical indexes falls down dramatically in the case of such high conductance.


Subject(s)
Biomechanical Phenomena/physiology , Fibroblasts/metabolism , Gap Junctions/metabolism , Models, Biological , Myocytes, Cardiac/metabolism , Calcium/metabolism , Cell Communication/physiology , Electrophysiology , Ion Channels/metabolism , Models, Theoretical , Myocardium/cytology , Potassium/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Sodium/metabolism
5.
J Math Biol ; 73(2): 335-66, 2016 08.
Article in English | MEDLINE | ID: mdl-26687545

ABSTRACT

We utilized our earlier developed 1D mathematical model of the heart muscle strand to study contribution of the bilateral interactions between excitation and contraction on the cellular and tissue levels to the local and global myocardium function. Numerical experiments on the model showed that an initially uniform strand, formed on the inherently identical cells, became functionally heterogeneous due to the asynchronous excitation via the electrical wave spread. Mechanical interactions between the cells and the mechano-electric feedback beat-to-beat affect the functional characteristics of coupled cardiomyocytes further, adjusting their electrical and mechanical heterogeneity to the activation timing. Model simulations showed that functional heterogeneity increases with an enlarged spatial extension of the myocardial strand (in terms of the longer slack length not a higher stretch of the strand), demonstrating a special role of the heart size in its function. Model analysis suggests that cooperative mechanisms of myofilament calcium activation contribute essentially to the generation of cellular functional heterogeneity in contracting cardiac tissue.


Subject(s)
Feedback, Physiological/physiology , Models, Biological , Myocardial Contraction/physiology , Myocardium , Biomechanical Phenomena , Computer Simulation , Electromagnetic Phenomena , Humans , Myocytes, Cardiac/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...