Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 113(11): 2367-76, 2016 11.
Article in English | MEDLINE | ID: mdl-27093551

ABSTRACT

In the biopharmaceutical industry, glycosylation is a critical quality attribute that can modulate the efficacy of a therapeutic glycoprotein. Obtaining a consistent glycoform profile is desired because molecular function can be defined by its carbohydrate structures. Specifically, the fucose content of oligosaccharides in glycoproteins is one of the most important attributes that can significantly affect antibody-dependent cellular cytotoxicity (ADCC) activity. It is therefore important to understand the fucosylation pathway and be able to control fucosylation at the desired level to match predecessor materials in late stage and biosimilar programs. Several strategies were explored in this study and mycophenolic acid (MPA) was able to finely modulate the fucose content with the least undesired side effects. However, the response was significantly different between CHO cell lines of different lineages. Further experiments were then performed for a deeper understanding of the mechanism of fucosylation in different CHO cell lines. Results indicated that changes in the intracellular nucleotide involved in fucosylation pathway after MPA treatment are the main cause of the differences in fucosylation level response in different CHO cell lines. Differences in MPA metabolism in the various CHO cell lines directly resulted in different levels of afucosylation measured in antibodies produced by the CHO cell lines. Biotechnol. Bioeng. 2016;113: 2367-2376. © 2016 Wiley Periodicals, Inc.


Subject(s)
CHO Cells/classification , CHO Cells/metabolism , Fucose/metabolism , Glycoproteins/metabolism , Mycophenolic Acid/metabolism , Animals , Cell Culture Techniques/methods , Cricetulus , Glycosylation , Humans , Signal Transduction/physiology
2.
Biotechnol Prog ; 30(2): 516-20, 2014.
Article in English | MEDLINE | ID: mdl-24449619

ABSTRACT

Product quality analyses are critical for developing cell line and bioprocess producing therapeutic proteins with desired critical product quality attributes. To facilitate these analyses, a high-throughput small-scale protein purification (SSP) is required to quickly purify many samples in parallel. Here we develop an SSP using ion exchange resins to purify a positively charged recombinant growth factor P1 in the presence of negatively charged dextran sulfate supplemented to improve the cell culture performance. The major challenge in this work is that the strong ionic interaction between P1 and dextran sulfate disrupts interaction between P1 and chromatography resins. To solve this problem, we develop a two-step SSP using Q Sepharose Fast Flow (QFF) and SP Sepharose XL (SPXL) resins to purify P1. The overall yield of this two-step SSP is 78%. Moreover, the SSP does not affect the critical product quality attributes. The SSP was critical for developing the cell line and process producing P1.


Subject(s)
Chromatography, Ion Exchange/methods , Dextran Sulfate/chemistry , Recombinant Proteins/isolation & purification , Biotechnology/methods , High-Throughput Screening Assays/methods , Recombinant Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...