Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Biomed Eng ; 46(3): 417-428, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29094293

ABSTRACT

Patients with ventricular assist devices still suffer from high rates of adverse events. Since many of these complications are linked to the flow field within the pump, optimization of the device geometry is essential. To investigate design aspects that influence the flow field, we developed a centrifugal blood pump using industrial guidelines. We then systematically varied selected design parameters and investigated their effects on hemodynamics and hydraulic performance using computational fluid dynamics. We analysed the flow fields based on Eulerian and Lagrangian features, shear stress histograms and six indicators of hemocompatibility. Within the investigated range of clearance gaps (50-500 µm), number of impeller blades (4-7), and semi-open versus closed shroud design, we found association of potentially damaging shear stress conditions with larger gap size and more blades. The extent of stagnation and recirculation zones was reduced with lower numbers of blades and a semi-open impeller, but it was increased with smaller clearance. The Lagrangian hemolysis index, a metric commonly applied to estimate blood damage, showed a negative correlation with hydraulic efficiency and no correlation with the Eulerian threshold-based metric.


Subject(s)
Equipment Design , Heart-Assist Devices , Materials Testing , Humans
3.
Phys Med Biol ; 57(4): 1019-45, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22298199

ABSTRACT

The complex interaction between an ultrasound-driven microbubble and an enclosing capillary microvessel is investigated by means of a coupled, multidomain numerical model using the finite volume formulation. This system is of interest in the study of transient blood-brain barrier disruption (BBBD) for drug delivery applications. The compliant vessel structure is incorporated explicitly as a distinct domain described by a dedicated physical model. Red blood cells (RBCs) are taken into account as elastic solids in the blood plasma. We report the temporal and spatial development of transmural pressure (P(tm)) and wall shear stress (WSS) at the luminal endothelial interface, both of which are candidates for the yet unknown mediator of BBBD. The explicit introduction of RBCs shapes the P(tm) and WSS distributions and their derivatives markedly. While the peak values of these mechanical wall parameters are not affected considerably by the presence of RBCs, a pronounced increase in their spatial gradients is observed compared to a configuration with blood plasma alone. The novelty of our work lies in the explicit treatment of the vessel wall, and in the modelling of blood as a composite fluid, which we show to be relevant for the mechanical processes at the endothelium.


Subject(s)
Blood-Brain Barrier/diagnostic imaging , Capillaries/diagnostic imaging , Microbubbles , Ultrasonics/methods , Biomechanical Phenomena , Blood-Brain Barrier/metabolism , Capillaries/cytology , Endothelial Cells/diagnostic imaging , Erythrocytes/diagnostic imaging , Humans , Time Factors , Ultrasonography
4.
J Biomech ; 42(6): 755-61, 2009 Apr 16.
Article in English | MEDLINE | ID: mdl-19281988

ABSTRACT

Spontaneous dissection of the cervical internal carotid artery (sICAD) is a major cause of stroke in young adults. A tear in the inner part of the vessel wall triggers sICAD as it allows the blood to enter the wall and develop a transmural hematoma. The etiology of the tear is unknown but many patients with sICAD report an initiating trivial trauma. We thus hypothesised that the site of the tear might correspond with the location of maximal stress in the carotid wall. Carotid artery geometries segmented from magnetic resonance images of a healthy subject at different static head positions were used to define a path of motion and deformation of the right cervical internal carotid artery (ICA). Maximum head rotation to the left and rotation to the left combined with hyperextension of the neck were investigated using a structural finite element model. A role of the carotid sinus as a geometrically compliant feature accommodating extension of the artery is shown. At the extreme range of the movements, the geometrical compliance of the carotid sinus is limited and significant stress concentrations appear just distal to the sinus with peak stresses at the internal wall on the posterior side of the vessel following maximum head rotation and on the anteromedial portion of the vessel wall following rotation and hyperextension. Clinically, the location of sICAD initiation is 10-30 mm distal to the origin of the cervical ICA, which corresponds with the peak stress locations observed in the model, thus supporting trivial trauma from natural head movements as a possible initiating factor in sICAD.


Subject(s)
Carotid Artery, Internal, Dissection/physiopathology , Carotid Artery, Internal, Dissection/surgery , Finite Element Analysis , Humans , Neck , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...