Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(50): 48336-48343, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38144047

ABSTRACT

This study presents in situ observations of studtite (UO2O2(H2O)2·2H2O) crystal growth utilizing liquid phase transmission electron microscopy (LP-TEM). Studtite was precipitated from a uranyl nitrate hexahydrate solution using hydrogen peroxide formed by the radiolysis of water in the TEM electron beam. The hydrogen peroxide (H2O2) concentration, directly controlled by the electron beam current, was varied to create local environments of low and high concentrations to compare the impact of the supersaturation ratio on the nucleation and growth mechanisms of studtite particles. The subsequent growth mechanisms were observed in real time by TEM and scanning TEM imaging. After the initial precipitation reaction, a post-mortem TEM analysis was performed on the samples to obtain high-resolution TEM images and selected area electron diffraction patterns to investigate crystallinity as well as energy-dispersive X-ray spectroscopy spectra to ensure that studtite was produced. The results reveal that studtite particles form through various mechanisms based on the concentration ratio of uranyl to H2O2 and that studtite is initially produced through an amorphous intermediary prior to formation of the crystalline material commonly reported in the literature.

2.
ACS Omega ; 8(19): 16896-16906, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37214678

ABSTRACT

The surface morphology characteristics of postenrichment deconversion products in the nuclear fuel cycle are important for producing nuclear fuel pellets. They also provide the first opportunity for a microstructural signature after conversion to gaseous uranium hexafluoride (UF6). This work synthesizes uranium oxides from uranyl fluoride (UO2F2) starting solutions by the wet ammonium diuranate route and a modification of the dry route. Products are reduced under a nitrogen/hydrogen atmosphere, with and without water vapor in the reducing environment. The crystal structures of the starting materials and resulting uranium oxides are characterized by powder X-ray diffraction. Scanning electron microscopy (SEM) and focused ion beam SEM with energy-dispersive X-ray spectroscopy (EDX) are used to investigate microstructural properties and quantify fluorine impurity concentrations. Heterogeneous distributions of fluorine with unique morphology characteristics were identified by backscatter electron imaging and EDX; these regions had elevated concentrations of fluorine impurities relating to the incomplete reduction of UO2F2 to UO2 and may provide a novel nuclear forensics morphology signature for nuclear fuel and U metal precursors.

SELECTION OF CITATIONS
SEARCH DETAIL
...