Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 92(8): 085109, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34470434

ABSTRACT

We report the development and implementation of a novel data acquisition (DAQ) technique for synchrotron-based laser pump X-ray Transient Absorption (XTA) spectroscopy, called X-ray Multi-Probe DAQ (XMP DAQ). This technique utilizes high performance analog to digital converters and home-built software to efficiently measure and process the XTA signal from all x-ray pulses between laser excitations. XMP DAQ generates a set of time resolved x-ray absorption spectra at thousands of different pump-probe time delays simultaneously. Two distinct XMP DAQ schemes are deployed to accommodate different synchrotron storage ring filling patterns. Current Integration (CI) DAQ is a quasi-analog technique that implements a fitting procedure to extract the time resolved absorption intensity from the averaged fluorescence detector response. The fitting procedure eliminates issues associated with small drifts in the voltage baseline and greatly enhances the accuracy of the technique. Photon Counting (PC) DAQ is a binary technique that uses a time resolved histogram to calculate the XTA spectrum. While PC DAQ is suited to measure XTA data with closely spaced x-ray pulses (∼10 ns) and a low count rate (<1 detected photon/pulse), CI DAQ works best for widely spaced pulses (tens of ns or greater) with a high count rate (>1 detected photon/pulse). XMP DAQ produces a two-dimensional XTA dataset, enabling efficient quantitative analysis of photophysical and photochemical processes from the sub-nanosecond timescale to 100 µs and longer.

2.
ACS Omega ; 4(4): 6375-6381, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459775

ABSTRACT

Photoactive transition-metal complexes that incorporate heteroleptic ligands present a first coordination shell, which is asymmetric. Although it is generally expected that the metal-ligand bond lengths respond differently to photoexcitation, resolving these fine structural changes remains experimentally challenging, especially for flexible multidentate ligands. In this work, ultrafast X-ray absorption spectroscopy is employed to capture directly the asymmetric elongations of chemically inequivalent metal-ligand bonds in the photoexcited spin-switching FeII complex [FeII(tpen)]2+ solvated in acetonitrile, where tpen denotes N,N,N',N'-tetrakis(2-pyridylmethyl)-1,2-ethylenediamine. The possibility to correlate precisely the nature of the donor/acceptor coordinating atoms to specific photoinduced structural changes within a binding motif will provide advanced diagnostics for optimizing numerous photoactive chemical and biological building blocks.

3.
Struct Dyn ; 6(6): 064902, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31893214

ABSTRACT

The photochemical reaction pathways of CHBr3 in solution were unveiled using two complementary X-ray techniques, time-resolved X-ray solution scattering (TRXSS) and X-ray transient absorption spectroscopy, in a wide temporal range from 100 ps to tens of microseconds. By performing comparative measurements in protic (methanol) and aprotic (methylcyclohexane) solvents, we found that the reaction pathways depend significantly on the solvent properties. In methanol, the major photoproducts are CH3OCHBr2 and HBr generated by rapid solvolysis of iso-CHBr2-Br, an isomer of CHBr3. In contrast, in methylcyclohexane, iso-CHBr2-Br returns to CHBr3 without solvolysis. In both solvents, the formation of CHBr2 and Br is a competing reaction channel. From the structural analysis of TRXSS data, we determined the structures of key intermediate species, CH3OCHBr2 and iso-CHBr2-Br in methanol and methylcyclohexane, respectively, which are consistent with the structures from density functional theory calculations.

4.
J Phys Chem Lett ; 7(22): 4535-4539, 2016 Nov 17.
Article in English | MEDLINE | ID: mdl-27790918

ABSTRACT

Echoing the roaring success of their bulk counterparts, nano-objects built from organolead halide perovskites (OLHP) present bright prospects for surpassing the performances of their conventional organic and inorganic analogues in photodriven technologies. Unraveling the photoinduced charge dynamics is essential for optimizing the optoelectronic functionalities. However, mapping the carrier-lattice interactions remains challenging, owing to their manifestations on multiple length scales and time scales. By correlating ultrafast time-resolved optical and X-ray absorption measurements, this work reveals the photoinduced formation of strong-coupling polarons in CH3NH3PbBr3 nanoparticles. Such polarons originate from the self-trapping of electrons in the Coulombic field caused by the displaced inorganic nuclei and the oriented organic cations. The transient structural change detected at the Pb L3 X-ray absorption edge is well-captured by a distortion with average bond elongation in the [PbBr6]2- motif. General implications for designing novel OLHP nanomaterials targeting the active utilization of these quasi-particles are outlined.

5.
J Phys Chem Lett ; 4(11): 1972-6, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-26283136

ABSTRACT

Building a detailed understanding of the structure-function relationship is a crucial step in the optimization of molecular photocatalysts employed in water splitting schemes. The optically dark nature of their active sites usually prevents a complete mapping of the photoinduced dynamics. In this work, transient X-ray absorption spectroscopy highlights the electronic and geometric changes that affect such a center in a bimetallic model complex. Upon selective excitation of the ruthenium chromophore, the cobalt moiety is reduced through intramolecular electron transfer and undergoes a spin flip accompanied by an average bond elongation of 0.20 ± 0.03 Å. The analysis is supported by simulations based on density functional theory structures (B3LYP*/TZVP) and FEFF 9.0 multiple scattering calculations. More generally, these results exemplify the large potential of the technique for tracking elusive intermediates that impart unique functionalities in photochemical devices.

6.
Rev Sci Instrum ; 82(7): 073110, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21806175

ABSTRACT

We describe our implementation of a high repetition rate (54 kHz-6.5 MHz), high power (>10 W), laser system at the 7ID beamline at the Advanced Photon Source for laser pump/x-ray probe studies of optically driven molecular processes. Laser pulses at 1.06 µm wavelength and variable duration (10 or 130 ps) are synchronized to the storage ring rf signal to a precision of ~250 fs rms. Frequency doubling and tripling of the laser radiation using nonlinear optical techniques have been applied to generate 532 and 355 nm light. We demonstrate that by combining a microfocused x-ray probe with focused optical laser radiation the requisite fluence (with <10 µJ/pulse) for efficient optical excitation can be readily achieved with a compact and commercial laser system at megahertz repetition rates. We present results showing the time-evolution of near-edge x-ray spectra of a well-studied, laser-excited metalloporphyrin, Ni(II)-tetramesitylporphyrin. The use of high repetition rate, short pulse lasers as pump sources will dramatically enhance the duty cycle and efficiency in data acquisition and hence capabilities for laser-pump/x-ray probe studies of ultrafast structural dynamics at synchrotron sources.

7.
Rev Sci Instrum ; 79(8): 085105, 2008 Aug.
Article in English | MEDLINE | ID: mdl-19044378

ABSTRACT

A new dedicated high-resolution high-throughput powder diffraction beamline has been built, fully commissioned, and opened to general users at the Advanced Photon Source. The optical design and commissioning results are presented. Beamline performance was examined using a mixture of the NIST Si and Al(2)O(3) standard reference materials, as well as the LaB6 line-shape standard. Instrumental resolution as high as 1.7 x 10(-4) (DeltaQQ) was observed.

8.
J Synchrotron Radiat ; 15(Pt 5): 427-32, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18728312

ABSTRACT

A dedicated high-resolution high-throughput X-ray powder diffraction beamline has been constructed at the Advanced Photon Source (APS). In order to achieve the goals of both high resolution and high throughput in a powder instrument, a multi-analyzer detector system is required. The design and performance of the 12-analyzer detector system installed on the powder diffractometer at the 11-BM beamline of APS are presented.


Subject(s)
X-Ray Diffraction/methods , Equipment Design/methods , Powder Diffraction/methods , Synchrotrons/instrumentation , X-Ray Diffraction/instrumentation
9.
J Appl Crystallogr ; 40(Pt 1): 196-198, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-19461850

ABSTRACT

The use of a polymeric Torlon (polyamide-imide) gasket material in a Paris-Edinburgh pressure cell for in situ high-pressure X-ray scattering measurements is demonstrated. The relatively low bulk modulus of the gasket allows for fine control of the sample pressure over the range 0.01-0.42 GPa. The quality of the data obtained in this way is suitable for Bragg and pair distribution function analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...