Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 61(42): 16520-16527, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36223761

ABSTRACT

A particle swarm optimization (PSO) algorithm is described for the fitting of ground-state spin Hamiltonian parameters from variable-temperature/variable-field (VTVH) magnetic circular dichroism (MCD) data. This PSO algorithm is employed to define the ground state of two catalytic intermediates from a flavodiiron protein (FDP), a class of enzymes with nitric oxide reductase activity. The bimetallic iron active site of this enzyme proceeds through a biferrous intermediate and a mixed ferrous-{FeNO}7 intermediate during the catalytic cycle, and the MCD spectra of these intermediates are presented and analyzed. The fits of the spin Hamiltonians are shown to provide important geometric and electronic insight into these species that is compared and contrasted with previous reports.


Subject(s)
Iron , Magnetic Phenomena , Circular Dichroism , Models, Molecular , Catalytic Domain , Iron/chemistry
2.
Biochemistry ; 59(16): 1618-1629, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32283930

ABSTRACT

The iron storage protein bacterioferritin (Bfr) binds up to 12 hemes b at specific sites in its protein shell. The heme b can be substituted with the photosensitizer Zn(II)-protoporphyrin IX (ZnPP), and photosensitized reductive iron release from the ferric oxyhydroxide {[FeO(OH)]n} core inside the ZnPP-Bfr protein shell was demonstrated [Cioloboc, D., et al. (2018) Biomacromolecules 19, 178-187]. This report describes the X-ray crystal structure of ZnPP-Bfr and the effects of loaded iron on the photophysical properties of the ZnPP. The crystal structure of ZnPP-Bfr shows a unique six-coordinate zinc in the ZnPP with two axial methionine sulfur ligands. Steady state and transient ultraviolet-visible absorption and luminescence spectroscopies show that irradiation with light overlapping the Soret absorption causes oxidation of ZnPP to the cation radical ZnPP•+ only when the ZnPP-Bfr is loaded with [FeO(OH)]n. Femtosecond transient absorption spectroscopy shows that this photooxidation occurs from the singlet excited state (1ZnPP*) on the picosecond time scale and is consistent with two oxidizing populations of Fe3+, which do not appear to involve the ferroxidase center iron. We propose that [FeO(OH)]n clusters at or near the inner surface of the protein shell are responsible for ZnPP photooxidation. Hopping of the photoinjected electrons through the [FeO(OH)]n would effectively cause migration of Fe2+ through the inner cavity to pores where it exits the protein. Reductive iron mobilization is presumed to be a physiological function of Bfrs. The phototriggered Fe3+ reduction could be used to identify the sites of iron mobilization within the Bfr protein shell.


Subject(s)
Bacterial Proteins/chemistry , Cytochrome b Group/chemistry , Ferritins/chemistry , Iron/chemistry , Protoporphyrins/chemistry , Bacterial Proteins/radiation effects , Crystallography, X-Ray , Cytochrome b Group/radiation effects , Escherichia coli/chemistry , Ferritins/radiation effects , Iron/radiation effects , Light , Oxidation-Reduction , Protein Conformation , Protoporphyrins/radiation effects
3.
J Biol Inorg Chem ; 25(3): 441-449, 2020 05.
Article in English | MEDLINE | ID: mdl-32189144

ABSTRACT

Nanoformulations, prodrugs, and targeted therapies are among the most intensively investigated approaches to new cancer therapeutics. Human ferritin has been used extensively as a nanocarrier for the delivery of drugs and imaging agents to cancerous tumor cells both in vitro and in vivo. We report exploitation of the native properties of ferritin, which can be co-loaded with simple forms of iron (FeOOH) and arsenic (arsenate) in place of the native phosphate. The As(III) form arsenic trioxide has been successfully used to treat one blood cancer, but has so far proven too systemically toxic for use on solid tumors in the clinic. The As(V) form, arsenate, on the other hand, while much less systemically toxic upon bolus injection has also proven ineffective for cancer therapy. We extended the C-terminal ends of the human ferritin subunits with a tumor cell receptor targeting peptide and loaded this modified ferritin with ~ 800 arsenates and ~ 1100 irons. Our results demonstrate targeting and uptake of the iron, arsenate-loaded modified human ferritin by breast cancer cells. At the same arsenic levels, the cytotoxicity of the iron, arsenate-loaded human ferritin was equivalent to that of free arsenic trioxide and much greater than that of free arsenate. The iron-only loaded human ferritin was not cytotoxic at the highest achievable doses. The results are consistent with the receptor-targeted human ferritin delivering arsenate as a reductively activated 'prodrug'. This targeted delivery could be readily adapted to treat other types of solid tumor cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Arsenates/pharmacology , Drug Delivery Systems , Ferritins/chemistry , Prodrugs/pharmacology , Antineoplastic Agents/chemistry , Arsenates/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Carriers/chemistry , Drug Screening Assays, Antitumor , Ferritins/genetics , Fluorescent Dyes/chemistry , Humans , Iron Compounds/chemistry , Iron Compounds/pharmacology , Oxidation-Reduction , Prodrugs/chemistry
4.
RSC Adv ; 10(10): 5551-5559, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-35497424

ABSTRACT

The quest for efficient solar-to-fuel conversion has led to the development of numerous homogeneous and heterogeneous systems for photochemical stimulation of 2H+ + 2e- → H2. Many such systems consist of a photosensitizer, an H2-evolving catalyst (HEC), and sacrificial electron donor often with an electron relay between photosensitizer and HEC. Colloidal platinum remains a popular HEC. We report here a novel, simple, and high yield synthesis of Pt nanoparticles (Pt NPs) associated with human heavy chain ferritin (Hfn). The formation of the Pt NPs capitalizes on Hfn's native catalysis of autoxidation of Fe(ii)(aq) (ferroxidase activity). Fe(ii) reduces Pt(ii) to Pt(0) and the rapid ferroxidase reaction produces FeO(OH), which associates with and stabilizes the incipient Pt NPs. This Pt/Fe-Hfn efficiently catalyzes photosensitized H2 production when combined with Eosin Y (EY) as photosensitizer and triethanolamine (TEOA) as sacrificial electron donor. With white light irradiation turnover numbers of 300H2 per Pt, 250H2 per EY were achieved. A quantum yield of 18% for H2 production was obtained with 550 nm irradiation. The fluorescence emission of EY is quenched by TEOA but not by Pt/Fe-Hfn. We propose that the photosensitized H2 production from aqueous TEOA, EY, Pt/Fe-Hfn solution occurs via a reductive quenching pathway in which both the singlet and triplet excited states of EY are reduced by TEOA to the anion radical, EY-˙, which in turn transfers electrons to the Pt/Fe-Hfn HEC. Hfn is known to be a remarkably versatile scaffold for incorporation and stabilization of noble metal and semiconductor nanoparticles. Since both EY and Hfn are amenable to scale-up, we envision further refinements to and applications of this photosensitized H2-generating system.

5.
J Phys Chem B ; 123(31): 6740-6749, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31294990

ABSTRACT

Some of us have previously reported the preparation of a dimeric form of the iron storage protein, bacterioferritin (Bfr), in which the native heme b is substituted with the photosensitizer, Zn(II)-protoporphyrin IX (ZnPP-Bfr dimer). We further showed that the ZnPP-Bfr dimer can serve as a photosensitizer for platinum-catalyzed H2 generation in aqueous solution without the usually added electron relay between photosensitizer and platinum ( Clark , E. R. , Inorg. Chem. 2017 , 56 , 4584 - 4593 ). We proposed reductive or oxidative quenching pathways involving the ZnPP anion radical (ZnPP•-) or the ZnPP cation radical, (ZnPP•+), respectively. The present report describes structural, photophysical, and photochemical properties of the ZnPP in the ZnPP-Bfr dimer. X-ray absorption spectroscopic studies at 10 K showed a mixture of five- and six-coordinated Zn centers with axial coordination by one long Zn-SγMet distance of ∼2.8 Å and ∼40% having an additional shorter Zn-S distance of ∼2.4 Å, in addition to the expected 4 nitrogen atom coordination from the porphyrin. The ZnPP in ZnPP-Bfr dimer was prone to photosensitized oxidation to ZnPP•+. The ZnPP•+ was rapidly reduced by ascorbic acid, which we previously determined was essential for photosensitized H2 production in this system. These results are consistent with an oxidative quenching pathway involving electron transfer from 3ZnPP* to platinum, which may be assisted by a flexible ZnPP axial coordination sphere. However, the low quantum yield for H2 production (∼1%) in this system could make reductive quenching difficult to detect, and can, therefore, not be completely ruled out. The ZnPP-Bfr dimer provides a simple but versatile framework for mechanistic assessment and optimization of porphyrin-photosensitized H2 generation without an electron relay between porphyrin and the platinum catalyst.


Subject(s)
Bacterial Proteins/chemistry , Cytochrome b Group/chemistry , Ferritins/chemistry , Hydrogen/chemistry , Protoporphyrins/chemistry , Ascorbic Acid/chemistry , Bacteria/chemistry , Bacterial Proteins/radiation effects , Cytochrome b Group/radiation effects , Ferritins/radiation effects , Light , Metal Nanoparticles/chemistry , Molecular Structure , Oxidation-Reduction , Platinum/chemistry , Protoporphyrins/radiation effects , Zinc/chemistry
6.
Biomacromolecules ; 19(1): 178-187, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29192767

ABSTRACT

Traditional photodynamic therapy for cancer relies on dye-photosensitized generation of singlet oxygen. However, therapeutically effective singlet oxygen generation requires well-oxygenated tissues, whereas many tumor environments tend to be hypoxic. We describe a platform for targeted enhancement of photodynamic therapy that produces singlet oxygen in oxygenated environments and hydroxyl radical, which is typically regarded as the most toxic reactive oxygen species, in hypoxic environments. The 24-subunit iron storage protein bacterioferritin (Bfr) has the unique property of binding 12 heme groups in its protein shell. We inserted the isostructural photosensitizer, zinc(II) protoporphyrin IX (ZnP), in place of the hemes and extended the surface-exposed N-terminal ends of the Bfr subunits with a peptide targeting a receptor that is hyperexpressed on the cell surface of many tumors and tumor vasculature. We then loaded the inner cavity with ∼2500 irons as a ferric oxyhydroxide polymer and finally conjugated 2 kDa polyethylene glycol to the outer surface. We showed that the inserted ZnP photosensitizes generation of both singlet oxygen and the hydroxyl radical, the latter via the reaction of photoreleased ferrous iron with hydrogen peroxide. This targeted iron-loaded ZnP-Bfr construct was endocytosed by C32 melanoma cells and localized to lysosomes. Irradiating the treated cells with light at wavelengths overlapping the ZnP Soret absorption band induced photosensitized intracellular Fe2+ release and substantial lowering of cell viability. This targeted, light-triggered production of intracellular singlet oxygen and Fenton-reactive iron could potentially be developed into a phototherapeutic adjunct for many types of cancers.


Subject(s)
Hydrogen Peroxide/metabolism , Iron/metabolism , Light , Melanoma/metabolism , Singlet Oxygen/metabolism , Skin Neoplasms/metabolism , Cell Line, Tumor , Humans , Melanoma/pathology , Skin Neoplasms/pathology , Spectrophotometry, Ultraviolet
7.
ACS Catal ; 8(12): 11704-11715, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-31263628

ABSTRACT

Flavo-diiron proteins (FDPs) are widespread in anaerobic bacteria, archaea, and protozoa, where they serve as the terminal components of dioxygen and nitric oxide reductive scavenging pathways. FDPs contain an N,O-ligated diiron site adjacent to a flavin mononucleotide (FMN) cofactor. The diiron site is structurally similar to those in hemerythrin, ribonucleotide reductase, and methane monooxygenase. However, only FDPs turn over NO to N2O at significant rates and yields. Previous studies revealed sequential binding of two NO molecules to the diferrous site, forming mono- and dinitrosyl intermediates leading to N2O formation. In the present work, these mono- and dinitrosyl intermediates have been characterized by EPR and Mössbauer spectroscopies and DFT calculations. Our results show that the iron proximal to the cofactor binds the first NO to form the diiron mononitrosyl complex, implying the iron distal to the FMN binds the second NO to form the diiron dinitrosyl intermediate. The exchange-coupling constants, J (H = JS1·S2), were found to differ substantially, +17 cm-1 for the diiron mononitrosyl and +60 cm-1 for the diiron dinitrosyl. Notwithstanding this large difference, our findings indicate retention of at least one hydroxo bridge throughout the NOR catalytic cycle. The Mossbauer hyperfine parameters and DFT calculations confirmed a semibridging NO- ligand in the mononitrosyl intermediate that lowers the exchange parameter. The DFT calculations on the dinitrosyl intermediate suggest a contribution to J from direct exchange between the S = 1 spins on the NO- ligands, which could initiate N-N bond formation. Our results provide insight into why FDPs are the only known nonheme diiron enzymes that competently turn over NO to N2O.

8.
J Am Chem Soc ; 139(34): 12009-12019, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28756660

ABSTRACT

Flavo-diiron proteins (FDPs) are non-heme iron containing enzymes that are widespread in anaerobic bacteria, archaea, and protozoa, serving as the terminal components to dioxygen and nitric oxide reductive scavenging pathways in these organisms. FDPs contain a dinuclear iron active site similar to that in hemerythrin, ribonucleotide reductase, and methane monooxygenase, all of which can bind NO and O2. However, only FDP competently turns over NO to N2O. Here, EPR and Mössbauer spectroscopies allow electronic characterization of the diferric and diferrous species of FDP. The exchange-coupling constant J (Hex = JS1·S2) was found to increase from +20 cm-1 to +32 cm-1 upon reduction of the diferric to the diferrous species, indicative of (1) at least one hydroxo bridge between the iron ions for both states and (2) a change to the diiron core structure upon reduction. In comparison to characterized diiron proteins and synthetic complexes, the experimental values were consistent with a dihydroxo bridged diferric core, which loses one hydroxo bridge upon reduction. DFT calculations of these structures gave values of J and Mössbauer parameters in agreement with experiment. Although the crystal structure shows a hydrogen bond between the iron bound aspartate and the bridging solvent molecule, the DFT calculations of structures consistent with the crystal structure gave calculated values of J incompatible with the spectroscopic results. We conclude that the crystal structure of the diferric state does not represent the frozen solution structure and that a mono-µ-hydroxo diferrous species is the catalytically functional state that reacts with NO and O2. The new EPR spectroscopic probe of the diferric state indicated that the diferric structure of FDP prior to and immediately after turnover with NO are flavin mononucleotide (FMN) dependent, implicating an additional proton transfer role for FMN in turnover of NO.


Subject(s)
Flavoproteins/chemistry , Iron/chemistry , Thermotoga maritima/enzymology , Catalytic Domain , Electron Spin Resonance Spectroscopy , Ferric Compounds/chemistry , Models, Molecular , Quantum Theory , Spectroscopy, Mossbauer , Thermotoga maritima/chemistry
9.
Inorg Chem ; 56(8): 4585-4594, 2017 Apr 17.
Article in English | MEDLINE | ID: mdl-28362081

ABSTRACT

Development of efficient light-driven splitting of water, 2H2O → 2H2 + O2, often attempts to optimize photosensitization of the reductive and oxidative half-reactions individually. Numerous homogeneous and heterogeneous systems have been developed for photochemical stimulation of the reductive half reaction, 2H+ + 2e- → H2. These systems generally consist of various combinations of a H+ reduction catalyst, a photosensitizer (PS), and a "sacrificial" electron donor. Zinc(II)-porphyrins (ZnPs) have frequently been used as PSs for H2 generation, but they are subject to various self-quenching processes in aqueous solutions. Colloidal platinum in nanoparticle form (Pt NP) is a classical H+ reduction catalyst using ZnP photosensitizers, but efficient photosensitized H2 generation requires an electron relay molecule between ZnP and Pt NP. The present report describes an aqueous system for visible (white) light-sensitized generation of H2 using a protein-embedded Zn(II)-protoporphyrin IX as PS and Pt NP as H+ reduction catalyst without an added electron relay. This system operated efficiently in piperazino- and morpholino-alkylsulfonic acid (Good's buffers), which served as sacrificial electron donors. The system also required ascorbate at relatively modest concentrations, which stabilized the Zn(II)-protoporphyrin IX against photodegradation. In the absence of an electron relay molecule, the photosensitized H2 generation must involve formation of at least a transient complex between a protein-embedded Zn(II)-protoporphyrin IX species and Pt NP.


Subject(s)
Hydrogen/chemistry , Light , Metal Nanoparticles/chemistry , Metalloporphyrins/chemistry , Photosensitizing Agents/chemistry , Platinum/chemistry , Models, Molecular , Molecular Structure
10.
Biochemistry ; 55(6): 970-9, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26786892

ABSTRACT

HD-GYPs make up a subclass of the metal-dependent HD phosphohydrolase superfamily and catalyze conversion of cyclic di(3',5')-guanosine monophosphate (c-di-GMP) to 5'-phosphoguanylyl-(3'→5')-guanosine (pGpG) and GMP. Until now, the only reported crystal structure of an HD-GYP that also exhibits c-di-GMP phosphodiesterase activity contains a His/carboxylate ligated triiron active site. However, other structural and phylogenetic correlations indicate that some HD-GYPs contain dimetal active sites. Here we provide evidence that an HD-GYP c-di-GMP phosphodiesterase, TM0186, from Thermotoga maritima can accommodate both di- and trimetal active sites. We show that an as-isolated iron-containing TM0186 has an oxo/carboxylato-bridged diferric site, and that the reduced (diferrous) form is necessary and sufficient to catalyze conversion of c-di-GMP to pGpG, but that conversion of pGpG to GMP requires more than two metals per active site. Similar c-di-GMP phosphodiesterase activities were obtained with divalent iron or manganese. On the basis of activity correlations with several putative metal ligand residue variants and molecular dynamics simulations, we propose that TM0186 can accommodate both di- and trimetal active sites. Our results also suggest that a Glu residue conserved in a subset of HD-GYPs is required for formation of the trimetal site and can also serve as a labile ligand to the dimetal site. Given the anaerobic growth requirement of T. maritima, we suggest that this HD-GYP can function in vivo with either divalent iron or manganese occupying di- and trimetal sites.


Subject(s)
3',5'-Cyclic-GMP Phosphodiesterases/metabolism , Iron/metabolism , Manganese/metabolism , Thermotoga maritima/enzymology , 3',5'-Cyclic-GMP Phosphodiesterases/chemistry , Animals , Catalytic Domain/physiology , Cattle , Enzyme Activation/physiology , Protein Structure, Secondary , Serum Albumin, Bovine
11.
Dalton Trans ; 45(2): 630-8, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26616549

ABSTRACT

We report photosensitized H2 generation using a protein scaffold that nucleates formation of platinum nanoparticles (Pt NPs) and contains "built-in" photosensitizers. The photosensitizers, zinc-protoporphyrin IX or zinc-mesoporphyrin IX (ZnP) were incorporated in place of the naturally occurring heme in the 24-subunit iron storage protein bacterioferritin (Bfr) when the ZnPs were added to the E. coli expression medium. We engineered a stable dimeric Bfr variant with two protein subunits sandwiching a ZnP. Ten glycines were also substituted in place of residues surrounding the vinyl side of the porphyrin in order increase access of solvent and/or redox agents. An optimized "one-pot" reaction of this glycine-substituted ZnMP-Bfr dimer with a Pt(iv) salt and borohydride resulted in a ∼50 : 50 mixture of protein in the form of Pt-free glycine-substituted ZnP-Bfr dimers and re-assembled 24-mers surrounding Pt NPs formed in situ. H2 production occurred upon visible light irradiation of this "one-pot" product when combined with triethanolamine as sacrificial electron donor and methyl viologen as electron relay. An analogous "two-pot" system containing mixtures of separately prepared Pt-free glycine-substituted ZnP-Bfr dimer and porphyrin-free Pt NP@Bfr 24-mer also showed robust photosensitized H2 generation. The glycine-substituted-ZnP-Bfr dimer thus served as photosensitizer for catalytic reduction of methyl viologen by triethanolamine, and the reduced methyl viologen was able to transfer electrons across the Bfr 24-mer protein shell to generate H2 at the enclosed Pt NP in a "dark" reaction. Our results demonstrate that Bfr is a readily manipulatable and versatile scaffold for photosensitized redox chemistry.


Subject(s)
Bacterial Proteins/chemistry , Cytochrome b Group/chemistry , Ferritins/chemistry , Hydrogen/chemistry , Metal Nanoparticles/chemistry , Metalloporphyrins/chemistry , Platinum/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cytochrome b Group/genetics , Cytochrome b Group/metabolism , Escherichia coli/metabolism , Ferritins/genetics , Ferritins/metabolism , Light , Oxidation-Reduction , Photosensitizing Agents/chemistry , Photosensitizing Agents/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
12.
Biochemistry ; 54(47): 7010-8, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26551523

ABSTRACT

Ferritins and bacterioferritins (Bfrs) utilize a binuclear non-heme iron binding site to catalyze oxidation of Fe(II), leading to formation of an iron mineral core within a protein shell. Unlike ferritins, in which the diiron site binds Fe(II) as a substrate, which then autoxidizes and migrates to the mineral core, the diiron site in Bfr has a 2-His/4-carboxylate ligand set that is commonly found in diiron cofactor enzymes. Bfrs could, therefore, utilize the diiron site as a cofactor rather than for substrate iron binding. In this study, we applied circular dichroism (CD), magnetic CD (MCD), and variable-temperature, variable-field MCD (VTVH-MCD) spectroscopies to define the geometric and electronic structures of the biferrous active site in Escherichia coli Bfr. For these studies, we used an engineered M52L variant, which is known to eliminate binding of a heme cofactor but to have very minor effects on either iron oxidation or mineral core formation. We also examined an H46A/D50A/M52L Bfr variant, which additionally disrupts a previously observed mononuclear non-heme iron binding site inside the protein shell. The spectral analyses define a binuclear and an additional mononuclear ferrous site. The biferrous site shows two different five-coordinate centers. After O2 oxidation and re-reduction, only the mononuclear ferrous signal is eliminated. The retention of the biferrous but not the mononuclear ferrous site upon O2 cycling supports a mechanism in which the binuclear site acts as a cofactor for the O2 reaction, while the mononuclear site binds the substrate Fe(II) that, after its oxidation to Fe(III), migrates to the mineral core.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cytochrome b Group/chemistry , Cytochrome b Group/metabolism , Escherichia coli/metabolism , Ferritins/chemistry , Ferritins/metabolism , Iron/metabolism , Catalytic Domain , Circular Dichroism , Escherichia coli/chemistry , Iron/chemistry , Models, Molecular , Oxygen/metabolism
13.
J Biol Inorg Chem ; 20(3): 603-13, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25700637

ABSTRACT

Flavodiiron proteins (FDPs) contain a unique active site consisting of a non-heme diiron carboxylate site proximal to a flavin mononucleotide (FMN). FDPs serve as the terminal components for reductive scavenging of dioxygen (to water) or nitric oxide (to nitrous oxide), which combats oxidative or nitrosative stress in many bacteria. Characterizations of FDPs from spirochetes or from any oral microbes have not been previously reported. Here, we report characterization of an FDP from the anaerobic spirochete, Treponema (T.) denticola, which is associated with chronic periodontitis. The isolated T. denticola FDP exhibited efficient four-electron dioxygen reductase activity and lower but significant anaerobic nitric oxide reductase activity. A mutant T. denticola strain containing the inactivated FDP-encoding gene was significantly more air-sensitive than the wild-type strain. Single turnover reactions of the four-electron-reduced FDP (FMNH2-Fe(II)Fe(II)) (FDPred) with O2 monitored on the milliseconds to seconds time scale indicated initial rapid formation of a spectral feature consistent with a cis-µ-1,2-peroxo-diferric intermediate, which triggered two-electron oxidation of FMNH2. Reaction of FDPred with NO showed apparent cooperativity between binding of the first and second NO to the diferrous site. The resulting diferrous dinitrosyl complex triggered two-electron oxidation of the FMNH2. Our cumulative results on this and other FDPs indicate that smooth two-electron FMNH2 oxidation triggered by the FDPred/substrate complex and overall four-electron oxidation of FDPred to FDPox constitutes a mechanistic paradigm for both dioxygen and nitric oxide reductase activities of FDPs. Four-electron reductive O2 scavenging by FDPs could contribute to oxidative stress protection in many other oral bacteria.


Subject(s)
Flavoproteins/metabolism , Nitric Oxide/metabolism , Oxygen/metabolism , Treponema denticola/metabolism , Catalysis , Catalytic Domain , Models, Molecular , Signal Transduction
14.
Biochemistry ; 53(35): 5631-7, 2014 Sep 09.
Article in English | MEDLINE | ID: mdl-25144650

ABSTRACT

Flavo-diiron proteins (FDPs) function as anaerobic nitric oxide scavengers in some microorganisms, catalyzing reduction of nitric to nitrous oxide. The FDP from Thermotoga maritima can be prepared in a deflavinated form with an intact diferric site (deflavo-FDP). Hayashi et al. [(2010) Biochemistry 49, 7040-7049] reported that reaction of NO with reduced deflavo-FDP produced substoichiometric N2O. Here we report a multispectroscopic approach to identify the iron species in the reactions of deflavo-FDP with NO. Mössbauer spectroscopy identified two distinct ferrous species after reduction of the antiferromagnetically coupled diferric site. Approximately 60% of the total ferrous iron was assigned to a diferrous species associated with the N2O-generating pathway. This pathway proceeds through successive diferrous-mononitrosyl (S = (1)/2 Fe(II){FeNO}(7)) and diferrous-dinitrosyl (S = 0 [{FeNO}(7)]2) species that form within ∼100 ms of mixing of the reduced protein with NO. The diferrous-dinitrosyl intermediate converted to an antiferromagnetically coupled diferric species that was spectroscopically indistinguishable from that in the starting deflavinated protein. These diiron species closely resembled those reported for the flavinated FDP [Caranto et al. (2014) J. Am. Chem. Soc. 136, 7981-7992], and the time scales of their formation and decay were consistent with the steady state turnover of the flavinated protein. The remaining ∼40% of ferrous iron was inactive in N2O generation but reversibly bound NO to give an S = (3)/2 {FeNO}(7) species. The results demonstrate that N2O formation in FDPs can occur via conversion of S = 0 [{FeNO}(7)]2 to a diferric form without participation of the flavin cofactor.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Flavoproteins/chemistry , Flavoproteins/metabolism , Nitrous Oxide/metabolism , Binding Sites , Electron Spin Resonance Spectroscopy , Iron/chemistry , Kinetics , Molecular Structure , Spectrophotometry , Spectroscopy, Mossbauer , Thermotoga maritima/chemistry , Thermotoga maritima/metabolism
15.
Proteins ; 82(11): 3154-62, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25143010

ABSTRACT

Rubredoxins (Rds) are small proteins containing a tetrahedral Fe(SCys)4 site. Folded forms of metal free Rds (apoRds) show greatly impaired ability to incorporate iron compared with chaotropically unfolded apoRds. In this study, formation of the Rd holoprotein (holoRd) on addition of iron to a structured, but iron-uptake incompetent apoRd was investigated in the presence of polystyrene nanoparticles (NP). In our rationale, hydrophobic contacts between apoRd and the NP surface would expose protein regions (including ligand cysteines) buried in the structured apoRd, allowing iron incorporation and folding to the native holoRd. Burial of the hydrophobic regions in the folded holoRd would allow its detachment from the NP surface. We found that both rate and yield of holoRd formation increased significantly in the presence of NP and were influenced by the NP concentration and size. Rates and yields had an optimum at "catalytic" NP concentrations (0.2 g/L NP) when using relatively small NP (46 nm diameter). At these optimal conditions, only a fraction of the apoRd was bound to the NP, consistent with the occurrence of turnover events on the NP surface. Lower rates and yields at higher NP concentrations or when using larger NP (200 nm) suggest that steric effects and molecular crowding on the NP surface favor specific "iron-uptake-competent" conformations of apoRd on the NP surface. This bio-mimetic chaperone system may be applicable to other proteins requiring an unfolding step before cofactor-triggered refolding, particularly when over-expressed under limited cofactor accessibility.


Subject(s)
Molecular Chaperones/chemistry , Nanostructures/chemistry , Rubredoxins/chemistry , Biomimetics , Ferric Compounds/chemistry , Hydrophobic and Hydrophilic Interactions , Iron/metabolism , Lactoglobulins/chemistry , Osmolar Concentration , Polystyrenes/chemistry , Protein Folding , Quaternary Ammonium Compounds/chemistry , Rubredoxins/metabolism , Spectrophotometry, Ultraviolet
16.
J Am Chem Soc ; 136(22): 7981-92, 2014 Jun 04.
Article in English | MEDLINE | ID: mdl-24828196

ABSTRACT

The unique active site of flavo-diiron proteins (FDPs) consists of a nonheme diiron-carboxylate site proximal to a flavin mononucleotide (FMN) cofactor. FDPs serve as the terminal components for reductive scavenging of dioxygen or nitric oxide to combat oxidative or nitrosative stress in bacteria, archaea, and some protozoan parasites. Nitric oxide is reduced to nitrous oxide by the four-electron reduced (FMNH2-Fe(II)Fe(II)) active site. In order to clarify the nitric oxide reductase mechanism, we undertook a multispectroscopic presteady-state investigation, including the first Mössbauer spectroscopic characterization of diiron redox intermediates in FDPs. A new transient intermediate was detected and determined to be an antiferromagnetically coupled diferrous-dinitrosyl (S = 0, [{FeNO}(7)]2) species. This species has an exchange energy, J ≥ 40 cm(-1) (JS1 ° S2), which is consistent with a hydroxo or oxo bridge between the two irons. The results show that the nitric oxide reductase reaction proceeds through successive formation of diferrous-mononitrosyl (S = ½, Fe(II){FeNO}(7)) and the S = 0 diferrous-dinitrosyl species. In the rate-determining process, the diferrous-dinitrosyl converts to diferric (Fe(III)Fe(III)) and by inference N2O. The proximal FMNH2 then rapidly rereduces the diferric site to diferrous (Fe(II)Fe(II)), which can undergo a second 2NO → N2O turnover. This pathway is consistent with previous results on the same deflavinated and flavinated FDP, which detected N2O as a product (Hayashi Biochemistry 2010, 49, 7040). Our results do not support other proposed mechanisms, which proceed either via "super-reduction" of [{FeNO}(7)]2 by FMNH2 or through Fe(II){FeNO}(7) directly to a diferric-hyponitrite intermediate. The results indicate that an S = 0 [{FeNO}(7)}]2 complex is a proximal precursor to N-N bond formation and N-O bond cleavage to give N2O and that this conversion can occur without redox participation of the FMN cofactor.


Subject(s)
Flavoproteins/chemistry , Nonheme Iron Proteins/chemistry , Oxidoreductases/chemistry , Catalytic Domain , Flavin Mononucleotide/chemistry , Nitric Oxide/chemistry , Nitrous Oxide/chemistry , Oxidation-Reduction , Spectroscopy, Mossbauer
17.
Biomacromolecules ; 15(5): 1920-7, 2014 May 12.
Article in English | MEDLINE | ID: mdl-24716617

ABSTRACT

The nonheme peroxidase, rubrerythrin, shows the ability to reduce hydrogen peroxide to water without involving strongly oxidizing and free-radical-creating powerful oxidants such as compounds I and II [formally Fe(IV)] formed in peroxidases and catalases. Rubrerythrin could, therefore, be a useful ingredient in protein-based artificial oxygen carriers. Here, we report that the oxygen-carrying proteins, hemoglobin (Hb) and hemerythrin (Hr), can each be copolymerized with rubrerythrin using glutaraldehyde yielding high molecular weight species. These copolymers show additional peroxidase activity compared to Hb-only and Hr-only polymers, respectively and also generate lower levels of free radicals in reactions that involve hydrogen peroxide. Tests on human umbilical vein endothelial cells (HUVEC) reveal slightly better performance of the Rbr copolymers compared to controls, as measured at 24 h, but not at later times.


Subject(s)
Blood Substitutes/metabolism , Hemerythrin/metabolism , Hemoglobins/metabolism , Oxygen/metabolism , Peroxidase/metabolism , Blood Substitutes/chemistry , Hemerythrin/chemistry , Hemoglobins/chemistry , Human Umbilical Vein Endothelial Cells/chemistry , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Models, Molecular , Molecular Conformation , Oxidation-Reduction , Oxygen/chemistry , Peroxidase/chemistry
18.
Chem Commun (Camb) ; 50(26): 3421-3, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24400317

ABSTRACT

The O2-binding carboxylate-bridged diiron site in DcrH-Hr was engineered in an effort to perform the H2O2-dependent oxidation of external substrates. A His residue was introduced near the diiron site in place of a conserved residue, Ile119. The I119H variant promotes the oxidation of guaiacol and 1,4-cyclohexadiene upon addition of H2O2.


Subject(s)
Bacteria/chemistry , Hemerythrin/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Oxidation-Reduction
19.
Inorg Chem ; 52(22): 13014-20, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24187962

ABSTRACT

A nonheme diiron active site in a 13 kDa hemerythrin-like domain of the bacterial chemotaxis protein DcrH-Hr contains an oxo bridge, two bridging carboxylate groups from Glu and Asp residues, and five terminally ligated His residues. We created a unique diiron coordination sphere containing five His and three Glu/Asp residues by replacing an Ile residue with Glu in DcrH-Hr. Direct coordination of the carboxylate group of E119 to Fe2 of the diiron site in the I119E variant was confirmed by X-ray crystallography. The substituted Glu is adjacent to an exogenous ligand-accessible tunnel. UV-vis absorption spectra indicate that the additional coordination of E119 inhibits the binding of the exogenous ligands azide and phenol to the diiron site. The extent of azide binding to the diiron site increases at pH ≤ 6, which is ascribed to protonation of the carboxylate ligand of E119. The diferrous state (deoxy form) of the engineered diiron site with the extra Glu residue is found to react more slowly than wild type with O2 to yield the diferric state (met form). The additional coordination of E119 to the diiron site also slows the rate of reduction from the met form. All these processes were found to be pH-dependent, which can be attributed to protonation state and coordination status of the E119 carboxylate. These results demonstrate that modifications of the endogenous coordination sphere can produce significant changes in the ligand binding and redox properties in a prototypical nonheme diiron-carboxylate protein active site.


Subject(s)
Desulfovibrio/enzymology , Hemerythrin/chemistry , Hemerythrin/genetics , Protein Engineering , Amino Acid Substitution , Catalytic Domain , Crystallography, X-Ray , Desulfovibrio/chemistry , Desulfovibrio/genetics , Hemerythrin/metabolism , Ligands , Models, Molecular , Oxidation-Reduction , Oxygen/metabolism , Spectrum Analysis, Raman
20.
Biochemistry ; 52(32): 5329-31, 2013 Aug 13.
Article in English | MEDLINE | ID: mdl-23883166

ABSTRACT

The intracellular level of the ubiquitous bacterial secondary messenger, cyclic di-(3',5')-guanosine monophosphate (c-di-GMP), represents a balance between its biosynthesis and degradation, the latter via specific phosphodiesterases (PDEs). One class of c-di-GMP PDEs contains a characteristic HD-GYP domain. Here we report that an HD-GYP PDE from Vibrio cholerae contains a non-heme diiron-carboxylate active site, and that only the reduced form is active. An engineered D-to-A substitution in the HD dyad caused loss of c-di-GMP PDE activity and of two iron atoms. This report constitutes the first demonstration that a non-heme diiron-carboxylate active site can catalyze the c-di-GMP PDE reaction and that this activity can be redox regulated in the HD-GYP class.


Subject(s)
3',5'-Cyclic-GMP Phosphodiesterases/chemistry , Bacterial Proteins/chemistry , Heme/chemistry , Iron/chemistry , Vibrio cholerae/enzymology , Catalytic Domain , Cyclic GMP/analogs & derivatives , Cyclic GMP/chemistry , Models, Molecular , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...