Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
iScience ; 27(5): 109693, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38689642

ABSTRACT

The USP7 deubiquitinase regulates proteins involved in the cell cycle, DNA repair, and epigenetics and has been implicated in cancer progression. USP7 inhibition has been pursued for the development of anti-cancer therapies. Here, we describe the discovery of potent and specific USP7 inhibitors exemplified by FX1-5303. FX1-5303 was used as a chemical probe to study the USP7-mediated regulation of p53 signaling in cells. It demonstrates mechanistic differences compared to MDM2 antagonists, a related class of anti-tumor agents that act along the same pathway. FX1-5303 synergizes with the clinically approved BCL2 inhibitor venetoclax in acute myeloid leukemia (AML) cell lines and ex vivo patient samples and leads to strong tumor growth inhibition in in vivo mouse xenograft models of multiple myeloma and AML. This work introduces new USP7 inhibitors, differentiates their mechanism of action from MDM2 inhibition, and identifies specific opportunities for their use in the treatment of AML.

2.
Clin Cancer Res ; 30(10): 2245-2259, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38451486

ABSTRACT

PURPOSE: Emerging evidence underscores the critical role of extrinsic factors within the microenvironment in protecting leukemia cells from therapeutic interventions, driving disease progression, and promoting drug resistance in acute myeloid leukemia (AML). This finding emphasizes the need for the identification of targeted therapies that inhibit intrinsic and extrinsic signaling to overcome drug resistance in AML. EXPERIMENTAL DESIGN: We performed a comprehensive analysis utilizing a cohort of ∼300 AML patient samples. This analysis encompassed the evaluation of secreted cytokines/growth factors, gene expression, and ex vivo drug sensitivity to small molecules. Our investigation pinpointed a notable association between elevated levels of CCL2 and diminished sensitivity to the MEK inhibitors (MEKi). We validated this association through loss-of-function and pharmacologic inhibition studies. Further, we deployed global phosphoproteomics and CRISPR/Cas9 screening to identify the mechanism of CCR2-mediated MEKi resistance in AML. RESULTS: Our multifaceted analysis unveiled that CCL2 activates multiple prosurvival pathways, including MAPK and cell-cycle regulation in MEKi-resistant cells. Employing combination strategies to simultaneously target these pathways heightened growth inhibition in AML cells. Both genetic and pharmacologic inhibition of CCR2 sensitized AML cells to trametinib, suppressing proliferation while enhancing apoptosis. These findings underscore a new role for CCL2 in MEKi resistance, offering combination therapies as an avenue to circumvent this resistance. CONCLUSIONS: Our study demonstrates a compelling rationale for translating CCL2/CCR2 axis inhibitors in combination with MEK pathway-targeting therapies, as a potent strategy for combating drug resistance in AML. This approach has the potential to enhance the efficacy of treatments to improve AML patient outcomes.


Subject(s)
Chemokine CCL2 , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , Receptors, CCR2 , Signal Transduction , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Receptors, CCR2/metabolism , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR2/genetics , Drug Resistance, Neoplasm/genetics , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Animals , Pyridones/pharmacology , Pyridones/therapeutic use , Mice
3.
Blood Cancer Discov ; 4(6): 452-467, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37698624

ABSTRACT

The BCL2 inhibitor venetoclax combined with the hypomethylating agent azacytidine shows significant clinical benefit in a subset of patients with acute myeloid leukemia (AML); however, resistance limits response and durability. We prospectively profiled the ex vivo activity of 25 venetoclax-inclusive combinations on primary AML patient samples to identify those with improved potency and synergy compared with venetoclax + azacytidine (Ven + azacytidine). Combination sensitivities correlated with tumor cell state to discern three patterns: primitive selectivity resembling Ven + azacytidine, monocytic selectivity, and broad efficacy independent of cell state. Incorporation of immunophenotype, mutation, and cytogenetic features further stratified combination sensitivity for distinct patient subtypes. We dissect the biology underlying the broad, cell state-independent efficacy for the combination of venetoclax plus the JAK1/2 inhibitor ruxolitinib. Together, these findings support opportunities for expanding the impact of venetoclax-based drug combinations in AML by leveraging clinical and molecular biomarkers associated with ex vivo responses. SIGNIFICANCE: By mapping drug sensitivity data to clinical features and tumor cell state, we identify novel venetoclax combinations targeting patient subtypes who lack sensitivity to Ven + azacytidine. This provides a framework for a taxonomy of AML informed by readily available sets of clinical and genetic features obtained as part of standard care. See related commentary by Becker, p. 437 . This article is featured in Selected Articles from This Issue, p. 419.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Azacitidine/pharmacology , Azacitidine/therapeutic use
4.
Trials ; 24(1): 85, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36747254

ABSTRACT

BACKGROUND: Multisite practical clinical trials evaluate treatments in real-world practice. A multisite randomized Veterans Health Administration (VHA) cooperative study (CSP#555) published in 2011 compared the first long-acting injectable (LAI) second-generation antipsychotic (SGA), Risperidone Consta®, in veterans with a diagnosis of schizophrenia or schizoaffective disorder, to oral antipsychotics, with unexpected null results for effectiveness and cost-effectiveness. Whether null results of this type could change VHA practice has not been studied. METHODS: A longitudinal observational analysis was used to evaluate the impact of the trial findings on VHA clinical practices. National administrative data compared new starts on LAI risperidone during the 4 years before the publication of CSP#555 in 2011 to new starts on LAI risperidone during the 4 years after. RESULTS: Among 119,565 Veterans with the indicated diagnoses treated with antipsychotics from 2007 to 2015, the number and proportion of new starts on LAI risperidone declined significantly following the study publication, as did the total number of annual users and drug expenditures. However, data from 2007 to 2010 showed the decline in new starts actually preceded the publication of CSP#555. This change was likely explained by the increase in new starts, total use, and expenditures on a newer medicine, LAI paliperidone, a 4-week LAI treatment, in the 2 years prior to the publication of CSP#555. CONCLUSIONS: The declining use of LAI risperidone likely primarily reflects the substitution of a longer-acting LAI SGA, paliperidone, that came to market 2 years before the study publication, a substitution that may have been reinforced by null CSP#555 study results for LAI risperidone.


Subject(s)
Antipsychotic Agents , Risperidone , Humans , Risperidone/adverse effects , Paliperidone Palmitate/adverse effects , Veterans Health , Injections , Antipsychotic Agents/therapeutic use , Delayed-Action Preparations/therapeutic use
5.
Psychiatry Res ; 321: 115071, 2023 03.
Article in English | MEDLINE | ID: mdl-36720177

ABSTRACT

Multi-site randomized effectiveness trials evaluate treatments under real-world conditions. Whether results change practice is under-studied. A 6-month 26-site Veterans Health Administration (VHA) cooperative study published in 2011 compared an oral second-generation antipsychotic, risperidone, to placebo for refractory PTSD with null results. National VHA administrative data compared new starts on risperidone during the 5 years before and after the year of publication. Among the 450,000-841,000 Veterans diagnosed with PTSD annually from 2006 to 2016 the proportion with new starts on risperidone declined every year before and after publication. No evidence of an effect of null study results on VHA clinical practice was observed.


Subject(s)
Antipsychotic Agents , Stress Disorders, Post-Traumatic , Veterans , Humans , Antipsychotic Agents/therapeutic use , Risperidone/therapeutic use , Stress Disorders, Post-Traumatic/drug therapy , United States , United States Department of Veterans Affairs , Veterans Health
6.
Cancer Cell ; 40(8): 850-864.e9, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35868306

ABSTRACT

Acute myeloid leukemia (AML) is a cancer of myeloid-lineage cells with limited therapeutic options. We previously combined ex vivo drug sensitivity with genomic, transcriptomic, and clinical annotations for a large cohort of AML patients, which facilitated discovery of functional genomic correlates. Here, we present a dataset that has been harmonized with our initial report to yield a cumulative cohort of 805 patients (942 specimens). We show strong cross-cohort concordance and identify features of drug response. Further, deconvoluting transcriptomic data shows that drug sensitivity is governed broadly by AML cell differentiation state, sometimes conditionally affecting other correlates of response. Finally, modeling of clinical outcome reveals a single gene, PEAR1, to be among the strongest predictors of patient survival, especially for young patients. Collectively, this report expands a large functional genomic resource, offers avenues for mechanistic exploration and drug development, and reveals tools for predicting outcome in AML.


Subject(s)
Leukemia, Myeloid, Acute , Cell Differentiation , Cohort Studies , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Receptors, Cell Surface/genetics , Transcriptome
7.
Mol Cancer Ther ; 21(7): 1125-1135, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35499387

ABSTRACT

Luxeptinib (CG-806) simultaneously targets FLT3 and select other kinase pathways operative in myeloid malignancies. We investigated the range of kinases it inhibits, its cytotoxicity landscape ex vivo with acute myeloid leukemia (AML) patient samples, and its efficacy in xenograft models. Luxeptinib inhibits wild-type (WT) and many of the clinically relevant mutant forms of FLT3 at low nanomolar concentrations. It is a more potent inhibitor of the activity of FLT3-internal tandem duplication, FLT3 kinase domain and gatekeeper mutants than against WT FLT3. Broad kinase screens disclosed that it also inhibits other kinases that can drive oncogenic signaling and rescue pathways, but spares kinases known to be associated with clinical toxicity. In vitro profiling of luxeptinib against 186 AML fresh patient samples demonstrated greater potency relative to other FLT3 inhibitors, including cases with mutations in FLT3, isocitrate dehydrogenase-1/2, ASXL1, NPM1, SRSF2, TP53, or RAS, and activity was documented in a xenograft AML model. Luxeptinib administered continuously orally every 12 hours at a dose that yielded a mean Cmin plasma concentration of 1.0 ± 0.3 µmol/L (SEM) demonstrated strong antitumor activity but no myelosuppression or evidence of tissue damage in mice or dogs in acute toxicology studies. On the basis of these studies, luxeptinib was advanced into a phase I trial for patients with AML and myelodysplastic/myeloproliferative neoplasms.


Subject(s)
Leukemia, Myeloid, Acute , Animals , Dogs , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
9.
Cell Death Dis ; 13(3): 246, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35296646

ABSTRACT

Aberrant B-cell receptor (BCR) signaling is a key driver in lymphoid malignancies. Bruton tyrosine kinase (BTK) inhibitors that disrupt BCR signaling have received regulatory approvals in therapy of mantle cell lymphoma (MCL). However, responses are incomplete and patients who experience BTK inhibitor therapy failure have dire outcomes. CG-806 (luxeptinib) is a dual BTK/SYK inhibitor in clinical development in hematologic malignancies. Here we investigated the pre-clinical activity of CG-806 in MCL. In vitro treatment with CG-806 thwarted survival of MCL cell lines and patient-derived MCL cells in a dose-dependent manner. CG-806 blocked BTK and SYK activation and abrogated BCR signaling. Contrary to ibrutinib, CG-806 downmodulated the anti-apoptotic proteins Mcl-1 and Bcl-xL, abrogated survival of ibrutinib-resistant MCL cell lines, and partially reversed the pro-survival effects of stromal microenvironment-mimicking conditions in primary MCL cells. Dual BTK/SYK inhibition led to mitochondrial membrane depolarization accompanied by mitophagy and metabolic reprogramming toward glycolysis. In vivo studies of CG-806 demonstrated improved survival in one of the two tested aggressive MCL PDX models. While suppression of the anti-apoptotic Bcl-2 family proteins and NFκB signaling correlated with in vivo drug sensitivity, OxPhos and MYC transcriptional programs were upregulated in the resistant model following treatment with CG-806. BAX and NFKBIA were implicated in susceptibility to CG-806 in a whole-genome CRISPR-Cas9 library screen (in a diffuse large B-cell lymphoma cell line). A high-throughput in vitro functional drug screen demonstrated synergy between CG-806 and Bcl-2 inhibitors. In sum, dual BTK/SYK inhibitor CG-806 disrupts BCR signaling and induces metabolic reprogramming and apoptosis in MCL. The Bcl-2 network is a key mediator of sensitivity to CG-806 and combined targeting of Bcl-2 demonstrates synergy with CG-806 warranting continued exploration in lymphoid malignancies.


Subject(s)
Lymphoma, Mantle-Cell , Adult , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Cell Line, Tumor , Humans , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Receptors, Antigen, B-Cell/metabolism , Syk Kinase , Tumor Microenvironment
10.
Signal Transduct Target Ther ; 7(1): 51, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35185150

ABSTRACT

Despite high initial response rates, acute myeloid leukemia (AML) treated with the BCL-2-selective inhibitor venetoclax (VEN) alone or in combinations commonly acquires resistance. We performed gene/protein expression, metabolomic and methylation analyses of isogenic AML cell lines sensitive or resistant to VEN, and identified the activation of RAS/MAPK pathway, leading to increased stability and higher levels of MCL-1 protein, as a major acquired mechanism of VEN resistance. MCL-1 sustained survival and maintained mitochondrial respiration in VEN-RE cells, which had impaired electron transport chain (ETC) complex II activity, and MCL-1 silencing or pharmacologic inhibition restored VEN sensitivity. In support of the importance of RAS/MAPK activation, we found by single-cell DNA sequencing rapid clonal selection of RAS-mutated clones in AML patients treated with VEN-containing regimens. In summary, these findings establish RAS/MAPK/MCL-1 and mitochondrial fitness as key survival mechanisms of VEN-RE AML and provide the rationale for combinatorial strategies effectively targeting these pathways.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Myeloid, Acute , MAP Kinase Signaling System , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2 , Sulfonamides , ras Proteins , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , MAP Kinase Signaling System/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology
11.
Blood Adv ; 6(10): 3062-3067, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35078224

ABSTRACT

Using ex vivo drug screening of primary patient specimens, we identified the combination of the p38 MAPK inhibitor doramapimod (DORA) with the BCL2 inhibitor venetoclax (VEN) as demonstrating broad, enhanced efficacy compared with each single agent across 335 acute myeloid leukemia (AML) patient samples while sparing primary stromal cells. Single-agent DORA and VEN sensitivity was associated with distinct, nonoverlapping tumor cell differentiation states. In particular, increased monocytes, M4/M5 French-American-British classification, and CD14+ immunophenotype tracked with sensitivity to DORA and resistance to VEN but were mitigated with the combination. Increased expression of MAPK14 and BCL2, the respective primary targets of DORA and VEN, were observed in monocytic and undifferentiated leukemias, respectively. Enrichment for DORA and VEN sensitivities was observed in AML with monocyte-like and progenitor-like transcriptomic signatures, respectively, and these associations diminished with the combination. The mechanism underlying the combination's enhanced efficacy may result from inhibition of p38 MAPK-mediated phosphorylation of BCL2, which in turn enhances sensitivity to VEN. These findings suggest exploiting complementary drug sensitivity profiles with respect to leukemic differentiation state, such as dual targeting of p38 MAPK and BCL2, offers opportunity for broad, enhanced efficacy across the clinically challenging heterogeneous landscape of AML.


Subject(s)
Leukemia, Myeloid, Acute , Cell Differentiation , Humans , Immunophenotyping , Leukemia, Myeloid, Acute/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , p38 Mitogen-Activated Protein Kinases
12.
Haematologica ; 107(1): 77-85, 2022 01 01.
Article in English | MEDLINE | ID: mdl-33375770

ABSTRACT

Drug resistance impedes the long-term effect of targeted therapies in acute myeloid leukemia (AML), necessitating the identification of mechanisms underlying resistance. Approximately 25% of AML patients carry FLT3 mutations and develop post-treatment insensitivity to FLT3 inhibitors, including sorafenib. Using a genome-wide CRISPR screen, we identified LZTR1, NF1, TSC1 or TSC2, negative regulators of the MAPK and MTOR pathways, as mediators of sorafenib resistance. Analyses of ex vivo drug sensitivity assays in FLT3-ITD AML patient samples revealed lower expression of LZTR1, NF1, and TSC2 correlated with sorafenib sensitivity. Importantly, MAPK and/or MTOR complex1 (MTORC1) activity were upregulated in AML cells made resistant to several FLT3 inhibitors, including crenolanib, quizartinib, or sorafenib. These cells were sensitive to MEK inhibitors, and the combination of FLT3 and MEK inhibitors showed enhanced efficacy, suggesting its effectiveness in AML patients with FLT3 mutations and those with resistance to FLT3 inhibitors.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Sorafenib , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , MAP Kinase Signaling System , Mutation , Niacinamide/pharmacology , Niacinamide/therapeutic use , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Sorafenib/pharmacology , TOR Serine-Threonine Kinases/genetics , Transcription Factors , fms-Like Tyrosine Kinase 3/genetics
13.
Clin Cancer Res ; 27(17): 4910-4922, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34233959

ABSTRACT

PURPOSE: Bcl-2 has been effectively targeted in lymphoid malignancies. However, resistance is inevitable, and novel approaches to target mitochondrial apoptosis are necessary. AZD5991, a selective BH3-mimetic in clinical trials, inhibits Mcl-1 with high potency. EXPERIMENTAL DESIGN: We explored the preclinical activity of AZD5991 in diffuse large B-cell lymphoma (DLBCL) and ibrutinib-resistant mantle cell lymphoma (MCL) cell lines, MCL patient samples, and mice bearing DLBCL and MCL xenografts using flow cytometry, immunoblotting, and Seahorse respirometry assay. Cas9 gene editing and ex vivo functional drug screen assays helped identify mechanisms of resistance to Mcl-1 inhibition. RESULTS: Mcl-1 was expressed in DLBCL and MCL cell lines and primary tumors. Treatment with AZD5991 restricted growth of DLBCL cells independent of cell of origin and overcame ibrutinib resistance in MCL cells. Mcl-1 inhibition led to mitochondrial dysfunction as manifested by mitochondrial membrane depolarization, decreased mitochondrial mass, and induction of mitophagy. This was accompanied by impairment of oxidative phosphorylation. TP53 and BAX were essential for sensitivity to Mcl-1, and oxidative phosphorylation was implicated in resistance to Mcl-1 inhibition. Induction of prosurvival proteins (e.g., Bcl-xL) in stromal conditions that mimic the tumor microenvironment rendered protection of primary MCL cells from Mcl-1 inhibition, while BH3-mimetics targeting Bcl-2/xL sensitized lymphoid cells to AZD5991. Treatment with AZD5991 reduced tumor growth in murine lymphoma models and prolonged survival of MCL PDX mice. CONCLUSIONS: Selective targeting Mcl-1 is a promising therapeutic approach in lymphoid malignancies. TP53 apoptotic network and metabolic reprogramming underlie susceptibility to Mcl-1 inhibition.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Lymphoma, B-Cell/pathology , Mitochondria/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Tumor Suppressor Protein p53/physiology , bcl-2-Associated X Protein/physiology , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Humans , Lymphoma, B-Cell/drug therapy , Mice
14.
NPJ Precis Oncol ; 5(1): 71, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34302041

ABSTRACT

The FDA recently approved eight targeted therapies for acute myeloid leukemia (AML), including the BCL-2 inhibitor venetoclax. Maximizing efficacy of these treatments requires refining patient selection. To this end, we analyzed two recent AML studies profiling the gene expression and ex vivo drug response of primary patient samples. We find that ex vivo samples often exhibit a general sensitivity to (any) drug exposure, independent of drug target. We observe that this "general response across drugs" (GRD) is associated with FLT3-ITD mutations, clinical response to standard induction chemotherapy, and overall survival. Further, incorporating GRD into expression-based regression models trained on one of the studies improved their performance in predicting ex vivo response in the second study, thus signifying its relevance to precision oncology efforts. We find that venetoclax response is independent of GRD but instead show that it is linked to expression of monocyte-associated genes by developing and applying a multi-source Bayesian regression approach. The method shares information across studies to robustly identify biomarkers of drug response and is broadly applicable in integrative analyses.

15.
Clin Cancer Res ; 26(24): 6535-6549, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32988967

ABSTRACT

PURPOSE: Targeting Bcl-2 family members upregulated in multiple cancers has emerged as an important area of cancer therapeutics. While venetoclax, a Bcl-2-selective inhibitor, has had success in the clinic, another family member, Bcl-xL, has also emerged as an important target and as a mechanism of resistance. Therefore, we developed a dual Bcl-2/Bcl-xL inhibitor that broadens the therapeutic activity while minimizing Bcl-xL-mediated thrombocytopenia. EXPERIMENTAL DESIGN: We used structure-based chemistry to design a small-molecule inhibitor of Bcl-2 and Bcl-xL and assessed the activity against in vitro cell lines, patient samples, and in vivo models. We applied pharmacokinetic/pharmacodynamic (PK/PD) modeling to integrate our understanding of on-target activity of the dual inhibitor in tumors and platelets across dose levels and over time. RESULTS: We discovered AZD4320, which has nanomolar affinity for Bcl-2 and Bcl-xL, and mechanistically drives cell death through the mitochondrial apoptotic pathway. AZD4320 demonstrates activity in both Bcl-2- and Bcl-xL-dependent hematologic cancer cell lines and enhanced activity in acute myeloid leukemia (AML) patient samples compared with the Bcl-2-selective agent venetoclax. A single intravenous bolus dose of AZD4320 induces tumor regression with transient thrombocytopenia, which recovers in less than a week, suggesting a clinical weekly schedule would enable targeting of Bcl-2/Bcl-xL-dependent tumors without incurring dose-limiting thrombocytopenia. AZD4320 demonstrates monotherapy activity in patient-derived AML and venetoclax-resistant xenograft models. CONCLUSIONS: AZD4320 is a potent molecule with manageable thrombocytopenia risk to explore the utility of a dual Bcl-2/Bcl-xL inhibitor across a broad range of tumor types with dysregulation of Bcl-2 prosurvival proteins.


Subject(s)
Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Hematologic Neoplasms/drug therapy , Piperidines/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfones/pharmacology , Thrombocytopenia/drug therapy , bcl-X Protein/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Apoptosis , Benzamides/therapeutic use , Cell Proliferation , Female , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Piperidines/therapeutic use , Sulfones/therapeutic use , Thrombocytopenia/metabolism , Thrombocytopenia/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
16.
Haematologica ; 105(6): 1468-1470, 2020 06.
Article in English | MEDLINE | ID: mdl-32482750
17.
Leukemia ; 34(9): 2342-2353, 2020 09.
Article in English | MEDLINE | ID: mdl-32094466

ABSTRACT

Acute myeloid leukemia (AML) results from the enhanced proliferation and impaired differentiation of hematopoietic stem and progenitor cells. Using an ex vivo functional screening assay, we identified that the combination of the BTK inhibitor ibrutinib and BCL2 inhibitor venetoclax (IBR + VEN), currently in clinical trials for chronic lymphocytic leukemia (CLL), demonstrated enhanced efficacy on primary AML patient specimens, AML cell lines, and in a mouse xenograft model of AML. Expanded analyses among a large cohort of hematologic malignancies (n = 651 patients) revealed that IBR + VEN sensitivity associated with selected genetic and phenotypic features in both CLL and AML specimens. Among AML samples, 11q23 MLL rearrangements were highly sensitive to IBR + VEN. Analysis of differentially expressed genes with respect to IBR + VEN sensitivity indicated pathways preferentially enriched in patient samples with reduced ex vivo sensitivity, including IL-10 signaling. These findings suggest that IBR + VEN may represent an effective therapeutic option for patients with AML.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Sulfonamides/therapeutic use , Adenine/analogs & derivatives , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Humans , Mice , Piperidines , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays
18.
Infect Control Hosp Epidemiol ; 40(11): 1229-1235, 2019 11.
Article in English | MEDLINE | ID: mdl-31522695

ABSTRACT

OBJECTIVE: Antibiotics are widely used by all specialties in the hospital setting. We evaluated previously defined high-risk antibiotic use in relation to Clostridioides difficile infections (CDIs). METHODS: We analyzed 2016-2017 data from 171 hospitals. High-risk antibiotics included second-, third-, and fourth-generation cephalosporins, fluoroquinolones, carbapenems, and lincosamides. A CDI case was a positive stool C. difficile toxin or molecular assay result from a patient without a positive result in the previous 8 weeks. Hospital-associated (HA) CDI cases included specimens collected >3 calendar days after admission or ≤3 calendar days from a patient with a prior same-hospital discharge within 28 days. We used the multivariable Poisson regression model to estimate the relative risk (RR) of high-risk antibiotic use on HA CDI, controlling for confounders. RESULTS: The median days of therapy for high-risk antibiotic use was 241.2 (interquartile range [IQR], 192.6-295.2) per 1,000 days present; the overall HA CDI rate was 33 (IQR, 24-43) per 10,000 admissions. The overall correlation of high-risk antibiotic use and HA CDI was 0.22 (P = .003), and higher correlation was observed in teaching hospitals (0.38; P = .002). For every 100-day (per 1,000 days present) increase in high-risk antibiotic therapy, there was a 12% increase in HA CDI (RR, 1.12; 95% CI, 1.04-1.21; P = .002) after adjusting for confounders. CONCLUSIONS: High-risk antibiotic use is an independent predictor of HA CDI. This assessment of poststewardship implementation in the United States highlights the importance of tracking trends of antimicrobial use over time as it relates to CDI.


Subject(s)
Anti-Bacterial Agents/adverse effects , Clostridium Infections/epidemiology , Cross Infection/epidemiology , Drug Utilization/statistics & numerical data , Hospitals/statistics & numerical data , Aged , Aged, 80 and over , Clostridioides difficile/isolation & purification , Feces/microbiology , Humans , Length of Stay/statistics & numerical data , Multivariate Analysis , Poisson Distribution , Retrospective Studies , Risk Assessment , Risk Factors , United States/epidemiology
19.
Cancer Discov ; 9(7): 910-925, 2019 07.
Article in English | MEDLINE | ID: mdl-31048320

ABSTRACT

To study mechanisms underlying resistance to the BCL2 inhibitor venetoclax in acute myeloid leukemia (AML), we used a genome-wide CRISPR/Cas9 screen to identify gene knockouts resulting in drug resistance. We validated TP53, BAX, and PMAIP1 as genes whose inactivation results in venetoclax resistance in AML cell lines. Resistance to venetoclax resulted from an inability to execute apoptosis driven by BAX loss, decreased expression of BCL2, and/or reliance on alternative BCL2 family members such as BCL2L1. The resistance was accompanied by changes in mitochondrial homeostasis and cellular metabolism. Evaluation of TP53 knockout cells for sensitivities to a panel of small-molecule inhibitors revealed a gain of sensitivity to TRK inhibitors. We relate these observations to patient drug responses and gene expression in the Beat AML dataset. Our results implicate TP53, the apoptotic network, and mitochondrial functionality as drivers of venetoclax response in AML and suggest strategies to overcome resistance. SIGNIFICANCE: AML is challenging to treat due to its heterogeneity, and single-agent therapies have universally failed, prompting a need for innovative drug combinations. We used a genetic approach to identify genes whose inactivation contributes to drug resistance as a means of forming preferred drug combinations to improve AML treatment.See related commentary by Savona and Rathmell, p. 831.This article is highlighted in the In This Issue feature, p. 813.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Mitochondria/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/pharmacology , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Xenograft Model Antitumor Assays
20.
Leuk Res ; 77: 42-50, 2019 02.
Article in English | MEDLINE | ID: mdl-30642575

ABSTRACT

Despite advances in understanding the molecular pathogenesis of acute myeloid leukaemia (AML), overall survival rates remain low. The ability to predict treatment response based on individual cancer genomics using computational modeling will aid in the development of novel therapeutics and personalize care. Here, we used a combination of genomics, computational biology modeling (CBM), ex vivo chemosensitivity assay, and clinical data from 100 randomly selected patients in the Beat AML project to characterize AML sensitivity to a bromodomain (BRD) and extra-terminal (BET) inhibitor. Computational biology modeling was used to generate patient-specific protein network maps of activated and inactivated protein pathways translated from each genomic profile. Digital drug simulations of a BET inhibitor (JQ1) were conducted by quantitatively measuring drug effect using a composite AML disease inhibition score. 93% of predicted disease inhibition scores matched the associated ex vivo IC50 value. Sensitivity and specificity of CBM predictions were 97.67%, and 64.29%, respectively. Genomic predictors of response were identified. Patient samples harbouring chromosomal aberrations del(7q) or -7, +8, or del(5q) and somatic mutations causing ERK pathway dysregulation, responded to JQ1 in both in silico and ex vivo assays. This study shows how a combination of genomics, computational modeling and chemosensitivity testing can identify network signatures associating with treatment response and can inform priority populations for future clinical trials of BET inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Computational Biology/methods , Gene Expression Regulation, Neoplastic/drug effects , Leukemia, Myeloid, Acute/pathology , Models, Molecular , Molecular Targeted Therapy , Transcription Factors/antagonists & inhibitors , Chromosome Aberrations , Databases, Factual , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...