Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
PeerJ ; 10: e13137, 2022.
Article in English | MEDLINE | ID: mdl-35529499

ABSTRACT

Molecular networks are built up from genetic elements that exhibit feedback interactions. Here, we studied the problem of measuring the similarity of directed networks by proposing a novel alignment-free approach: the network subgraph-based approach. Our approach does not make use of randomized networks to determine modular patterns embedded in a network, and this method differs from the network motif and graphlet methods. Network similarity was quantified by gauging the difference between the subgraph frequency distributions of two networks using Jensen-Shannon entropy. We applied the subgraph approach to study three types of molecular networks, i.e., cancer networks, signal transduction networks, and cellular process networks, which exhibit diverse molecular functions. We compared the performance of our subgraph detection algorithm with other algorithms, and the results were consistent, but other algorithms could not address the issue of subgraphs/motifs embedded within a subgraph/motif. To evaluate the effectiveness of the subgraph-based method, we applied the method along with the Jensen-Shannon entropy to classify six network models, and it achieves a 100% accuracy of classification. The proposed information-theoretic approach allows us to determine the structural similarity of two networks regardless of node identity and network size. We demonstrated the effectiveness of the subgraph approach to cluster molecular networks that exhibit similar regulatory interaction topologies. As an illustration, our method can identify (i) common subgraph-mediated signal transduction and/or cellular processes in AML and pancreatic cancer, and (ii) scaffold proteins in gastric cancer and hepatocellular carcinoma; thus, the results suggested that there are common regulation modules for cancer formation. We also found that the underlying substructures of the molecular networks are dominated by irreducible subgraphs; this feature is valid for the three classes of molecular networks we studied. The subgraph-based approach provides a systematic scenario for analyzing, compare and classifying molecular networks with diverse functionalities.


Subject(s)
Algorithms , Neoplasms , Humans , Proteins/chemistry , Signal Transduction/physiology
2.
J Biomol Struct Dyn ; 40(1): 177-189, 2022 01.
Article in English | MEDLINE | ID: mdl-32835615

ABSTRACT

The FoxM1 pathway is an oncogenic signaling pathway involved in essential mechanisms including control cell-cycle progression, apoptosis and cell growth which are the common hallmarks of various cancers. Although its biological functions in the tumor development and progression are known, the mechanism by which it participates in those processes is not understood. The present work reveals images of the oncogenic FoxM1 pathway controlling the cell cycle process with alternative treatment options via phytochemical substances in the lung cancer study. The downstream significant protein modules of the FoxM1 pathway were extracted by the Molecular Complex Detection (MCODE) and the maximal clique (Mclique) algorithms. Furthermore, the effects of post-transcriptional modification by microRNA, transcription factor binding and the phytochemical compounds are observed through their interactions with the lung cancer protein modules. We provided two case studies to demonstrate the usefulness of our database. Our results suggested that the combination of various phytochemicals is effective in the treatment of lung cancer. The ultimate goal of the present work is to partly support the discovery of plant-derived compounds in combination treatment of classical chemotherapeutic agents to increase the efficacy of lung cancer method probably with minor side effects. Furthermore, a web-based system displaying results of the present work is set up for investigators posing queries at http://sit.mfu.ac.th/lcgdb/index_FoxM1.php.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Forkhead Box Protein M1/therapeutic use , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Phytochemicals/pharmacology
3.
PeerJ ; 8: e9556, 2020.
Article in English | MEDLINE | ID: mdl-33005483

ABSTRACT

Biological processes are based on molecular networks, which exhibit biological functions through interactions of genetic elements or proteins. This study presents a graph-based method to characterize molecular networks by decomposing the networks into directed multigraphs: network subgraphs. Spectral graph theory, reciprocity and complexity measures were used to quantify the network subgraphs. Graph energy, reciprocity and cyclomatic complexity can optimally specify network subgraphs with some degree of degeneracy. Seventy-one molecular networks were analyzed from three network types: cancer networks, signal transduction networks, and cellular processes. Molecular networks are built from a finite number of subgraph patterns and subgraphs with large graph energies are not present, which implies a graph energy cutoff. In addition, certain subgraph patterns are absent from the three network types. Thus, the Shannon entropy of the subgraph frequency distribution is not maximal. Furthermore, frequently-observed subgraphs are irreducible graphs. These novel findings warrant further investigation and may lead to important applications. Finally, we observed that cancer-related cellular processes are enriched with subgraph-associated driver genes. Our study provides a systematic approach for dissecting biological networks and supports the conclusion that there are organizational principles underlying molecular networks.

4.
J Bioinform Comput Biol ; 15(1): 1650043, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28150521

ABSTRACT

Drug repurposing is a new method for disease treatments, which accelerates the identification of new uses for existing drugs with minimal side effects for patients. MicroRNA-based therapeutics are a class of drugs that have been used in gene therapy following the FDA's approval of the first anti-sense therapy. This study examines the effects of oxLDL on vascular smooth muscle cells (VSMCs) and identifies potential drugs and antimiRs for treating VSMC-associated diseases. The Connectivity Map (cMap) database is utilized to identify potential new uses of existing drugs. The success of the identifications was supported by MTT assay, clonogenic assay and clinical trial data. Specifically, 37 drugs, some of which are undergoing clinical trials, were identified. Three of the identified drugs exhibit IC50 activities. Among the 37 drugs' targets, three differentially expressed genes (DEGs) are identified as drug targets by using both the DrugBank and the NCBI PubChem Compound databases. Also, one DEG, DNMT1, which is regulated by 17 miRNAs, where these miRNAs are potential targets for developing antimiR-based miRNA therapy, is found.


Subject(s)
Drug Repositioning/methods , Gene Expression Regulation/drug effects , Lipoproteins, LDL/genetics , MicroRNAs , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/pathology , Cluster Analysis , Drug Discovery , Gene Ontology , Humans , Molecular Targeted Therapy , Muscle, Smooth, Vascular/cytology
5.
Crit Rev Oncog ; 22(1-2): 143-155, 2017.
Article in English | MEDLINE | ID: mdl-29604942

ABSTRACT

In this review, we introduce a new vision of cancer describing opposing effects that control progression. Cancer is a paradigm of opposing of "Yin" and "Yang," with Yin being the effect to promote cancer and Yang that to maintain the normal state. This Yin Yang hypothesis has been used to select Yin and Yang genes to develop multigene signatures for determining prognosis in lung and breast cancer. Most of the Yin genes are involved in cell survival, growth, and proliferation, whereas most Yang genes are involved in cell apoptosis. Furthermore, Yin and Yang pathways have been identified in breast cancer and compounds that can inhibit the Yin pathways or activate the Yang pathways have been examined, suggesting a new promising targeting therapy for cancer. We are building a Yin Yang model to represent the dynamic change of Yin and Yang genes and pathways.


Subject(s)
Carcinogenesis/genetics , Molecular Targeted Therapy , Neoplasm Proteins/genetics , Neoplasms/genetics , Apoptosis/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/pathology , Prognosis
6.
Comput Biol Chem ; 65: 154-164, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27746113

ABSTRACT

Epigenetic regulation has been linked to the initiation and progression of cancer. Aberrant expression of microRNAs (miRNAs) is one such mechanism that can activate or silence oncogenes (OCGs) and tumor suppressor genes (TSGs) in cells. A growing number of studies suggest that miRNA expression can be regulated by methylation modification, thus triggering cancer development. However, there is no comprehensive in silico study concerning miRNA regulation by direct DNA methylation in cancer. Ovarian serous cystadenocarcinoma (OSC) was therefore chosen as a tumor model for the present work. Twelve batches of OSC data, with at least 35 patient samples in each batch, were obtained from The Cancer Genome Atlas (TCGA) database. The Spearman rank correlation coefficient (SRCC) was used to quantify the correlation between the CpG DNA methylation level and miRNA expression level. Meta-analysis was performed to reduce the effects of biological heterogeneity among different batches. MiRNA-target interactions were also inferred by computing SRCC and meta-analysis to assess the correlation between miRNA expression and cancer-associated gene expression and the interactions were further validated by a query against the miRTarBase database. A total of 26 potential epigenetic-regulated miRNA genes that can target OCGs or TSGs in OSC were found to show biological relevance between DNA methylation and miRNA gene expression. Furthermore, some of the identified DNA-methylated miRNA genes; for instance, the miR-200 family, were previously identified as epigenetic-regulated miRNAs and correlated with poor survival of ovarian cancer. We also found that several miRNA target genes, BTG3, NDN, HTRA3, CDC25A, and HMGA2 were also related to the poor outcomes in ovarian cancer. The present study proposed a systematic strategy to construct highly confident epigenetic-regulated miRNA pathways for OSC. The findings are validated and are in line with the literature. The inclusion of direct DNA methylated miRNA events may offer another layer of explanation that along with genetics can give a better understanding of the carcinogenesis process.


Subject(s)
Cystadenocarcinoma, Serous/metabolism , DNA Methylation , MicroRNAs/metabolism , Ovarian Neoplasms/metabolism , Cystadenocarcinoma, Serous/pathology , Female , Humans , Ovarian Neoplasms/pathology
7.
PeerJ ; 4: e2478, 2016.
Article in English | MEDLINE | ID: mdl-27703845

ABSTRACT

BACKGROUND: Abnormal proliferation of vascular smooth muscle cells (VSMC) is a major cause of cardiovascular diseases (CVDs). Many studies suggest that vascular injury triggers VSMC dedifferentiation, which results in VSMC changes from a contractile to a synthetic phenotype; however, the underlying molecular mechanisms are still unclear. METHODS: In this study, we examined how VSMC responds under mechanical stress by using time-course microarray data. A three-phase study was proposed to investigate the stress-induced differentially expressed genes (DEGs) in VSMC. First, DEGs were identified by using the moderated t-statistics test. Second, more DEGs were inferred by using the Gaussian Graphical Model (GGM). Finally, the topological parameters-based method and cluster analysis approach were employed to predict the last batch of DEGs. To identify the potential drugs for vascular diseases involve VSMC proliferation, the drug-gene interaction database, Connectivity Map (cMap) was employed. Success of the predictions were determined using in-vitro data, i.e. MTT and clonogenic assay. RESULTS: Based on the differential expression calculation, at least 23 DEGs were found, and the findings were qualified by previous studies on VSMC. The results of gene set enrichment analysis indicated that the most often found enriched biological processes are cell-cycle-related processes. Furthermore, more stress-induced genes, well supported by literature, were found by applying graph theory to the gene association network (GAN). Finally, we showed that by processing the cMap input queries with a cluster algorithm, we achieved a substantial increase in the number of potential drugs with experimental IC50 measurements. With this novel approach, we have not only successfully identified the DEGs, but also improved the DEGs prediction by performing the topological and cluster analysis. Moreover, the findings are remarkably validated and in line with the literature. Furthermore, the cMap and DrugBank resources were used to identify potential drugs and targeted genes for vascular diseases involve VSMC proliferation. Our findings are supported by in-vitro experimental IC50, binding activity data and clinical trials. CONCLUSION: This study provides a systematic strategy to discover potential drugs and target genes, by which we hope to shed light on the treatments of VSMC proliferation associated diseases.

8.
Article in English | MEDLINE | ID: mdl-26384373

ABSTRACT

Chromosomal translocation (CT) is of enormous clinical interest because this disorder is associated with various major solid tumors and leukemia. A tumor-specific fusion gene event may occur when a translocation joins two separate genes. Currently, various CT databases provide information about fusion genes and their genomic elements. However, no database of the roles of fusion genes, in terms of essential functional and regulatory elements in oncogenesis, is available. FARE-CAFE is a unique combination of CTs, fusion proteins, protein domains, domain-domain interactions, protein-protein interactions, transcription factors and microRNAs, with subsequent experimental information, which cannot be found in any other CT database. Genomic DNA information including, for example, manually collected exact locations of the first and second break points, sequences and karyotypes of fusion genes are included. FARE-CAFE will substantially facilitate the cancer biologist's mission of elucidating the pathogenesis of various types of cancer. This database will ultimately help to develop 'novel' therapeutic approaches. Database URL: http://ppi.bioinfo.asia.edu.tw/FARE-CAFE.


Subject(s)
DNA, Neoplasm , Databases, Genetic , Neoplasm Proteins , Neoplasms , Response Elements , Animals , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Humans , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism
9.
BMC Syst Biol ; 9 Suppl 1: S5, 2015.
Article in English | MEDLINE | ID: mdl-25707690

ABSTRACT

BACKGROUND: Molecular networks are the basis of biological processes. Such networks can be decomposed into smaller modules, also known as network motifs. These motifs show interesting dynamical behaviors, in which co-operativity effects between the motif components play a critical role in human diseases. We have developed a motif-searching algorithm, which is able to identify common motif types from the cancer networks and signal transduction networks (STNs). Some of the network motifs are interconnected which can be merged together and form more complex structures, the so-called coupled motif structures (CMS). These structures exhibit mixed dynamical behavior, which may lead biological organisms to perform specific functions. RESULTS: In this study, we integrate transcription factors (TFs), microRNAs (miRNAs), miRNA targets and network motifs information to build the cancer-related TF-miRNA-motif networks (TMMN). This allows us to examine the role of network motifs in cancer formation at different levels of regulation, i.e. transcription initiation (TF → miRNA), gene-gene interaction (CMS), and post-transcriptional regulation (miRNA → target genes). Among the cancer networks and STNs we considered, it is found that there is a substantial amount of crosstalking through motif interconnections, in particular, the crosstalk between prostate cancer network and PI3K-Akt STN.To validate the role of network motifs in cancer formation, several examples are presented which demonstrated the effectiveness of the present approach. A web-based platform has been set up which can be accessed at: http://ppi.bioinfo.asia.edu.tw/pathway/. It is very likely that our results can supply very specific CMS missing information for certain cancer types, it is an indispensable tool for cancer biology research.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Computational Biology , Gene Regulatory Networks , MicroRNAs/genetics , Signal Transduction , Transcription Factors/metabolism , Breast Neoplasms/metabolism , Humans
10.
Amino Acids ; 46(4): 953-61, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24385242

ABSTRACT

Plants are continuously subjected to infection by pathogens, including bacteria and viruses. Bacteria can inject a variety of effector proteins into the host to reprogram host defense mechanism. It is known that microRNAs participate in plant disease resistance to bacterial pathogens and previous studies have suggested that some bacterial effectors have evolved to disturb the host's microRNA-regulated pathways; and so enabling infection. In this study, the inter-species interaction between an Xanthomonas campestris pv campestris (Xcc) pathogen effector and Arabidopsis thaliana microRNA transcription promoter was investigated using three methods: (1) interolog, (2) alignment based on using transcription factor binding site profile matrix, and (3) the web-based binding site prediction tool, PATSER. Furthermore, we integrated another two data sets from our previous study into the present web-based system. These are (1) microRNA target genes and their downstream effects mediated by protein-protein interaction (PPI), and (2) the Xcc-Arabidopsis PPI information. This present work is probably the first comprehensive study of constructing pathways that comprises effector, microRNA, target genes and PPI for the study of pathogen-host interactions. It is expected that this study may help to elucidate the role of pathogen-host interplay in a plant's immune system. The database is freely accessible at: http://ppi.bioinfo.asia.edu.tw/EDMRP .


Subject(s)
Arabidopsis/genetics , Arabidopsis/microbiology , Bacterial Proteins/metabolism , MicroRNAs/genetics , Plant Diseases/microbiology , RNA, Plant/genetics , Xanthomonas campestris/metabolism , Arabidopsis/metabolism , Binding Sites , MicroRNAs/metabolism , Plant Diseases/genetics , Promoter Regions, Genetic , Protein Binding , RNA, Plant/metabolism
11.
Comput Biol Med ; 43(11): 1645-52, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24209909

ABSTRACT

MicroRNAs are small, endogenous RNAs found in many different species and are known to have an influence on diverse biological phenomena. They also play crucial roles in plant biological processes, such as metabolism, leaf sidedness and flower development. However, the functional roles of most microRNAs are still unknown. The identification of closely related microRNAs and target genes can be an essential first step towards the discovery of their combinatorial effects on different cellular states. A lot of research has tried to discover microRNAs and target gene interactions by implementing machine learning classifiers with target prediction algorithms. However, high rates of false positives have been reported as a result of undetermined factors which will affect recognition. Therefore, integrating diverse techniques could improve the prediction. In this paper we propose identifying microRNAs target of Arabidopsis thaliana by integrating prediction scores from PITA, miRanda and RNAHybrid algorithms used as a feature vector of microRNA-target interactions, and then implementing SVM, random forest tree and neural network machine learning algorithms to make final predictions by majority voting. Furthermore, microRNA target genes are linked with their protein-protein interaction (PPI) partners. We focus on plant resistance genes and transcription factor information to provide new insights into plant pathogen interaction networks. Downstream pathways are characterized by the Jaccard coefficient, which is implemented based on Gene Ontology. The database is freely accessible at http://ppi.bioinfo.asia.edu.tw/At_miRNA/.


Subject(s)
Arabidopsis Proteins/genetics , Computational Biology/methods , MicroRNAs/genetics , Models, Statistical , Protein Interaction Maps/genetics , Support Vector Machine , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Decision Trees , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL