Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Brain Inform ; 8(1): 19, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34586519

ABSTRACT

Interest in the studying of functional connections in the brain has grown considerably in the last decades, as many studies have pointed out that alterations in the interaction among brain areas can play a role as markers of neurological diseases. Most studies in this field treat the brain network as a system of connections stationary in time, but dynamic features of brain connectivity can provide useful information, both on physiology and pathological conditions of the brain. In this paper, we propose the application of a computational methodology, named Particle Filter (PF), to study non-stationarities in brain connectivity in functional Magnetic Resonance Imaging (fMRI). The PF algorithm estimates time-varying hidden parameters of a first-order linear time-varying Vector Autoregressive model (VAR) through a Sequential Monte Carlo strategy. On simulated time series, the PF approach effectively detected and enabled to follow time-varying hidden parameters and it captured causal relationships among signals. The method was also applied to real fMRI data, acquired in presence of periodic tactile or visual stimulations, in different sessions. On these data, the PF estimates were consistent with current knowledge on brain functioning. Most importantly, the approach enabled to detect statistically significant modulations in the cause-effect relationship between brain areas, which correlated with the underlying visual stimulation pattern presented during the acquisition.

2.
IEEE Trans Image Process ; 28(4): 1748-1758, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30371367

ABSTRACT

Synthetic aperture radar (SAR) and ultrasound (US) are two important active imaging techniques for remote sensing, both of which are subject to speckle noise caused by coherent summation of back-scattered waves and subsequent nonlinear envelope transformations. Estimating the characteristics of this multiplicative noise is crucial to develop denoising methods and to improve statistical inference from remote sensing images. In this paper, reversible jump Markov chain Monte Carlo (RJMCMC) algorithm has been used with a wider interpretation and a recently proposed RJMCMC-based Bayesian approach, trans-space RJMCMC, has been utilized. The proposed method provides an automatic model class selection mechanism for remote sensing images of SAR and US where the model class space consists of popular envelope distribution families. The proposed method estimates the correct distribution family, as well as the shape and the scale parameters, avoiding performing an exhaustive search. For the experimental analysis, different SAR images of urban, forest and agricultural scenes, and two different US images of a human heart have been used. Simulation results show the efficiency of the proposed method in finding statistical models for speckle.

3.
J Theor Biol ; 419: 227-237, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28163008

ABSTRACT

We envision the molecular evolution process as an information transfer process and provide a quantitative measure for information preservation in terms of the channel capacity according to the channel coding theorem of Shannon. We calculate Information capacities of DNA on the nucleotide (for non-coding DNA) and the amino acid (for coding DNA) level using various substitution models. We extend our results on coding DNA to a discussion about the optimality of the natural codon-amino acid code. We provide the results of an adaptive search algorithm in the code domain and demonstrate the existence of a large number of genetic codes with higher information capacity. Our results support the hypothesis of an ancient extension from a 2-nucleotide codon to the current 3-nucleotide codon code to encode the various amino acids.


Subject(s)
Algorithms , Codon/genetics , Genetic Code/genetics , Models, Genetic , Amino Acids/genetics , Base Sequence , Evolution, Molecular
4.
IEEE/ACM Trans Comput Biol Bioinform ; 13(6): 1183-1193, 2016.
Article in English | MEDLINE | ID: mdl-26540693

ABSTRACT

Most existing methods used for gene regulatory network modeling are dedicated to inference of steady state networks, which are prevalent over all time instants. However, gene interactions evolve over time. Information about the gene interactions in different stages of the life cycle of a cell or an organism is of high importance for biology. In the statistical graphical models literature, one can find a number of methods for studying steady-state network structures while the study of time varying networks is rather recent. A sequential Monte Carlo method, namely particle filtering (PF), provides a powerful tool for dynamic time series analysis. In this work, the PF technique is proposed for dynamic network inference and its potentials in time varying gene expression data tracking are demonstrated. The data used for validation are synthetic time series data available from the DREAM4 challenge, generated from known network topologies and obtained from transcriptional regulatory networks of S. cerevisiae. We model the gene interactions over the course of time with multivariate linear regressions where the parameters of the regressive process are changing over time.


Subject(s)
Gene Regulatory Networks/physiology , Models, Biological , Monte Carlo Method , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcriptional Activation/physiology , Algorithms , Computer Simulation , Gene Expression Regulation/physiology , Models, Statistical , Signal Transduction/physiology , Time Factors
5.
Comput Biol Chem ; 53 Pt A: 79-83, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25179009

ABSTRACT

Specific molecular mechanisms may affect the pattern of mutation in particular regions, and therefore leaving a footprint or signature in the DNA of their activity. The common approach to identify these signatures is studying the frequency of substitutions. However, such an analysis ignores the important spatial information, which is important with regards to the mutation occurrence statistics. In this work, we propose that the study of the distribution of distances between consecutive mutations along the DNA molecule can provide information about the types of somatic mutational processes. In particular, we have found that specific cancer types show a power-law in interoccurrence distances, instead of the expected exponential distribution dictated with the Poisson assumption commonly made in the literature. Cancer genomes exhibiting power-law interoccurrence distances were enriched in cancer types where the main mutational process is described to be the activity of the APOBEC protein family, which produces a particular pattern of mutations called Kataegis. Therefore, the observation of a power-law in interoccurence distances could be used to identify cancer genomes with Kataegis.


Subject(s)
Apolipoproteins B/genetics , Breast Neoplasms/genetics , Genome, Human , Mutation , Neoplasm Proteins/genetics , Neoplasms/genetics , Female , Humans , Male , Models, Genetic , Neoplasms/classification , Statistical Distributions
6.
IEEE Trans Image Process ; 19(9): 2357-68, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20409994

ABSTRACT

We propose to model the image differentials of astrophysical source maps by Student's t-distribution and to use them in the Bayesian source separation method as priors. We introduce an efficient Markov Chain Monte Carlo (MCMC) sampling scheme to unmix the astrophysical sources and describe the derivation details. In this scheme, we use the Langevin stochastic equation for transitions, which enables parallel drawing of random samples from the posterior, and reduces the computation time significantly (by two orders of magnitude). In addition, Student's t-distribution parameters are updated throughout the iterations. The results on astrophysical source separation are assessed with two performance criteria defined in the pixel and the frequency domains.

7.
IEEE Trans Image Process ; 18(5): 982-94, 2009 May.
Article in English | MEDLINE | ID: mdl-19336309

ABSTRACT

We investigate the source separation problem of random fields within a Bayesian framework. The Bayesian formulation enables the incorporation of prior image models in the estimation of sources. Due to the intractability of the analytical solution, we resort to numerical methods for the joint maximization of the a posteriori distribution of the unknown variables and parameters. We construct the prior densities of pixels using Markov random fields based on a statistical model of the gradient image, and we use a fully Bayesian method with modified-Gibbs sampling. We contrast our work to approximate Bayesian solutions such as Iterated Conditional Modes (ICM) and to non-Bayesian solutions of ICA variety. The performance of the method is tested on synthetic mixtures of texture images and astrophysical images under various noise scenarios. The proposed method is shown to outperform significantly both its approximate Bayesian and non-Bayesian competitors.

8.
IEEE Trans Image Process ; 15(9): 2686-93, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16948313

ABSTRACT

Synthetic aperture radar (SAR) images are inherently affected by a signal dependent noise known as speckle, which is due to the radar wave coherence. In this paper, we propose a novel adaptive despeckling filter and derive a maximum a posteriori (MAP) estimator for the radar cross section (RCS). We first employ a logarithmic transformation to change the multiplicative speckle into additive noise. We model the RCS using the recently introduced heavy-tailed Rayleigh density function, which was derived based on the assumption that the real and imaginary parts of the received complex signal are best described using the alpha-stable family of distribution. We estimate model parameters from noisy observations by means of second-kind statistics theory, which relies on the Mellin transform. Finally, we compare the proposed algorithm with several classical speckle filters applied on actual SAR images. Experimental results show that the homomorphic MAP filter based on the heavy-tailed Rayleigh prior for the RCS is among the best for speckle removal.


Subject(s)
Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Radar , Computer Simulation , Imaging, Three-Dimensional/methods , Information Storage and Retrieval/methods , Likelihood Functions , Models, Statistical
9.
IEEE Trans Image Process ; 13(4): 527-33, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15376587

ABSTRACT

Synthetic aperture radar (SAR) imagery has found important applications due to its clear advantages over optical satellite imagery one of them being able to operate in various weather conditions. However, due to the physics of the radar imaging process, SAR images contain unwanted artifacts in the form of a granular look which is called speckle. The assumptions of the classical SAR image generation model lead to a Rayleigh distribution model for the histogram of the SAR image. However, some experimental data such as images of urban areas show impulsive characteristics that correspond to underlying heavy-tailed distributions, which are clearly non-Rayleigh. Some alternative distributions have been suggested such as the Weibull, log-normal, and the k-distribution which had success in varying degrees depending on the application. Recently, an alternative model namely the alpha-stable distribution has been suggested for modeling radar clutter. In this paper, we show that the amplitude distribution of the complex wave, the real and the imaginery components of which are assumed to be distributed by the alpha-stable distribution, is a generalization of the Rayleigh distribution. We demonstrate that the amplitude distribution is a mixture of Rayleighs as is the k-distribution in accordance with earlier work on modeling SAR images which showed that almost all successful SAR image models could be expressed as mixtures of Rayleighs. We also present parameter estimation techniques based on negative order moments for the new model. Finally, we test the performance of the model on urban images and compare with other models such as Rayleigh, Weibull, and the k-distribution.

10.
Neural Netw ; 16(3-4): 479-91, 2003.
Article in English | MEDLINE | ID: mdl-12672442

ABSTRACT

A microwave sky map results from a combination of signals from various astrophysical sources, such as cosmic microwave background radiation, synchrotron radiation and galactic dust radiation. To derive information about these sources, one needs to separate them from the measured maps on different frequency channels. Our insufficient knowledge of the weights to be given to the individual signals at different frequencies makes this a difficult task. Recent work on the problem led to only limited success due to ignoring the noise and to the lack of a suitable statistical model for the sources. In this paper, we derive the statistical distribution of some source realizations, and check the appropriateness of a Gaussian mixture model for them. A source separation technique, namely, independent factor analysis, has been suggested recently in the literature for Gaussian mixture sources in the presence of noise. This technique employs a three layered neural network architecture which allows a simple, hierarchical treatment of the problem. We modify the algorithm proposed in the literature to accommodate for space-varying noise and test its performance on simulated astrophysical maps. We also compare the performances of an expectation-maximization and a simulated annealing learning algorithm in estimating the mixture matrix and the source model parameters. The problem with expectation-maximization is that it does not ensure global optimization, and thus the choice of the starting point is a critical task. Indeed, we did not succeed to reach good solutions for random initializations of the algorithm. Conversely, our experiments with simulated annealing yielded initialization-independent results. The mixing matrix and the means and coefficients in the source model were estimated with a good accuracy while some of the variances of the components in the mixture model were not estimated satisfactorily.


Subject(s)
Astronomy/methods , Physics/methods , Astronomy/statistics & numerical data , Factor Analysis, Statistical , Physics/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...