Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 21(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37103370

ABSTRACT

In the present investigation, 24-methylcholesta-5(6), 22-diene-3ß-ol (MCDO), a major phytosterol was isolated from the cultured marine diatom, Phaeodactylum tricornutum Bohlin, and in vitro and in vivo anti-inflammatory effects were determined. MCDO demonstrated very potent dose-dependent inhibitory effects on the production of nitric oxide (NO) and prostaglandin E2 (PGE2) against lipopolysaccharide (LPS)-induced RAW 264.7 cells with minimal cytotoxic effects. MCDO also demonstrated a strong and significant suppression of pro-inflammatory cytokines of interleukin-1ß (IL-1ß) production, but no substantial inhibitory effects were observed on the production of cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) at the tested concentrations against LPS treatment on RAW macrophages. Western blot assay confirmed the suppression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions against LPS-stimulated RAW 264.7 cells. In addition, MCDO was assessed for in vivo anti-inflammatory effects using the zebrafish model. MCDO acted as a potent inhibitor for reactive oxygen species (ROS) and NO levels with a protective effect against the oxidative stress induced by LPS in inflammatory zebrafish embryos. Collectively, MCDO isolated from the cultured marine diatom P. tricornutum exhibited profound anti-inflammatory effects both in vitro and in vivo, suggesting that this major sterol might be a potential treatment for inflammatory diseases.


Subject(s)
Diatoms , Animals , Diatoms/metabolism , Zebrafish/metabolism , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Signal Transduction , Cytokines/metabolism , Interleukin-6/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Cyclooxygenase 2/metabolism
2.
Biochim Biophys Acta Gen Subj ; 1866(2): 130067, 2022 02.
Article in English | MEDLINE | ID: mdl-34896255

ABSTRACT

BACKGROUND: The ideal nanoparticle should be able to encapsulate either pharmaceutical agents or imaging probes so that it could treat or image clinical tumours by targeting the cancer site efficiently. Further, it would be an added advantage if it demonstrates: small size, built in targeting, biocompatibility and biodegradability. Ferritin, which is an endogenous self-assembling protein, stores iron and plays a role in iron homeostasis. When iron atoms are removed apoferritin (AFt) is formed which consists of a hollow shell where it can be used to load guest molecules. Due to its unique architecture, AFt has been investigated as a versatile carrier for tumour theranostic applications. DNA-binding protein from starved cells (Dps), which also belongs to the ferritin family, is a protein found only in prokaryotes. It is used to store iron and protect chromosomes from oxidative damage; because of its architecture, Dps could also be used as a delivery vehicle. CONCLUSIONS: Both these nano particles are promising in the field of oncology, especially due to their stability, solubility and biocompatibility features. Further their exterior surface can be modified for better tumour-targeting ability. More studies, are warranted to determine the immunogenicity, biodistribution, and clearance from the body. GENERAL PERSPECTIVE: This review discusses a few selected examples of the remarkable in vitro and in vivo studies that have been carried out in the recent past with the use of AFt and Dps in targeting and delivery of various pharmaceutical agents, natural products and imaging probes in the field of oncology.


Subject(s)
Apoferritins
3.
Saudi Pharm J ; 27(4): 565-573, 2019 May.
Article in English | MEDLINE | ID: mdl-31061626

ABSTRACT

Cancer is a global burden. In low- and middle-income countries around 70% of deaths are due to cancer. For a number of years natural products have been a good source of agents for combatting cancer and plants have played a huge role in anti-cancer product development. For many centuries, indigenous cultures around the world have used traditional herbal medicine to treat a myriad of diseases including cancer. In Sri Lanka, a number of plants have been reported to have anti-cancer properties and some of the commonly used plants are described in this review with an account of their compounds and modes of action. Only a small number of the plants in Sri Lanka have been tested for their bioactivity and more research is required to determine their medicinal activity with the aim of developing novel drugs to fight this disease.

4.
BMC Cancer ; 18(1): 180, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29433565

ABSTRACT

BACKGROUND: While a range of common genetic variants have been identified to be associated with risk of sporadic breast cancer in several Western studies, little is known about their role in South Asian populations. Our objective was to examine the association between common genetic variants in breast cancer related genes and risk of breast cancer in a cohort of Sri Lankan women. METHODS: A case-control study of 350 postmenopausal women with breast cancer and 350 healthy postmenopausal women was conducted. Genotyping using the iPLEX GOLD assay was done for 56 haplotype-tagging single nucleotide polymorphisms (SNPs) in 36 breast cancer related genes. Testing for association was done using an additive genetic model. Odds ratios and 95% confidence intervals were calculated using adjusted logistic regression models. RESULTS: Four SNPs [rs3218550 (XRCC2), rs6917 (PHB), rs1801516 (ATM), and rs13689 (CDH1)] were significantly associated with risk of breast cancer. The rs3218550 T allele and rs6917 A allele increased breast cancer risk by 1.5-fold and 1.4-fold, respectively. The CTC haplotype defined by the SNPs rs3218552|rs3218550|rs3218536 on chromosome 7 (P = 0.0088) and the CA haplotype defined by the SNPs rs1049620|rs6917 on chromosome 17 (P = 0.0067) were significantly associated with increased risk of breast cancer. The rs1801516 A allele and the rs13689 C allele decreased breast cancer risk by 0.6-fold and 0.7-fold, respectively. CONCLUSIONS: These findings suggest that common genetic polymorphisms in the XRCC2, PHB, CDH1 and ATM genes are associated with risk of breast cancer among Sri Lankan postmenopausal women. The exact biological mechanisms of how these variants regulate overall breast cancer risk need further evaluation using functional studies.


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide , Postmenopause , Aged , Aged, 80 and over , Antigens, CD , Ataxia Telangiectasia Mutated Proteins/genetics , Breast Neoplasms/pathology , Cadherins/genetics , Case-Control Studies , DNA-Binding Proteins/genetics , Female , Genotype , Humans , Logistic Models , Middle Aged , Prohibitins , Repressor Proteins/genetics , Risk Factors , Sri Lanka
5.
J Cell Biochem ; 118(12): 4526-4535, 2017 12.
Article in English | MEDLINE | ID: mdl-28471540

ABSTRACT

We investigated activity and mechanism of action of two AhR ligand antitumor agents, AFP 464 and 5F 203 on human renal cancer cells, specifically examining their effects on cell cycle progression, apoptosis, and migration. TK-10, SN12C, Caki-1, and ACHN human renal cancer cell lines were treated with AFP 464 and 5F 203. We evaluated cytotoxicity by MTS assays, cell cycle arrest, and apoptosis by flow cytometry and corroborated a mechanism of action involving AhR signal transduction activation. Changes in migration properties by wound healing assays were investigated: 5F 203-sensitive cells show decreased migration after treatment, therefore, we measured c-Met phosphorylation by Western blot in these cells. A 5F 203 induced a decrease in cell viability which was more marked than AFP 464. This cytotoxicity was reduced after treatment with the AhR inhibitor α-NF for both compounds indicating AhR signaling activation plays a role in the mechanism of action. A 5F 203 is sequestered by TK-10 cells and induces CYP1A1 expression; 5F 203 potently inhibited migration of TK-10, Caki-1, and SN12C cells, and inhibited c-Met receptor phosphorylation in TK-10 cells. AhR ligand antitumor agents AFP 464 and 5F 203 represent potential new candidates for the treatment of renal cancer. A 5F 203 only inhibited migration of sensitive cells and c-Met receptor phosphorylation in TK-10 cells. c-Met receptor signal transduction is important in migration and metastasis. Therefore, we consider that 5F 203 offers potential for the treatment of metastatic renal carcinoma. J. Cell. Biochem. 118: 4526-4535, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Renal Cell/drug therapy , Flavonoids/pharmacology , Kidney Neoplasms/drug therapy , Neoplasm Proteins/agonists , Receptors, Aryl Hydrocarbon/agonists , Thiazoles/pharmacology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Neoplasm Proteins/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction/drug effects
6.
Org Biomol Chem ; 14(31): 7585-93, 2016 Aug 21.
Article in English | MEDLINE | ID: mdl-27443386

ABSTRACT

Natural products with anti-cancer activity play a vital role in lead and target discovery. We report here the synthesis and biological evaluation of the plant-derived alkaloid, piperlongumine and analogues. Using a Horner-Wadsworth-Emmons coupling approach, a selection of piperlongumine-like compounds were prepared in good overall yield from a novel phosphonoacetamide reagent. A number of the compounds displayed potent anti-cancer activity against colorectal (HCT 116) and ovarian (IGROV-1) carcinoma cell lines, via a mechanism of action which may involve ROS generation. Contrary to previous reports, no selective action in cancer cell (MRC-5) was observed for piperlongumine analogues.


Subject(s)
Antineoplastic Agents/pharmacology , Dioxolanes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dioxolanes/chemical synthesis , Dioxolanes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
7.
Adv Healthc Mater ; 4(18): 2816-21, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26592186

ABSTRACT

Anticancer drug Gefitinib encapsulated within human heavy chain apoferritin by diffusion allows pH-controlled sustained release of cargo. The combination of increased cellular uptake, and potent and enhanced antitumor activity against the HER2 overexpressing SKBR3 cell line compared to Gefitinib alone, makes it a promising carrier for delivery of drugs to tumor sites.


Subject(s)
Apoferritins/metabolism , Drug Delivery Systems/methods , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Cell Line, Tumor , Endocytosis/drug effects , Gefitinib , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...