Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 13(1): 21927, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38081834

ABSTRACT

The continued emergence of vaccine-resistant SARS-CoV-2 variants of concern (VOC) requires specific identification of each VOC as it arises. Here, we report an expanded version of our previously described sloppy molecular beacon (SMB) melting temperature (Tm) signature-based assay for VOCs, now modified to include detection of Delta (B.1.617.2) and Omicron (B.1.1.529) sub-variants. The SMB-VOC assay targets the signature codons 501, 484 and 452 in the SARS-CoV-2 spike protein which we show can specifically detect and differentiate all known VOCs including the Omicron subvariants (BA.1, BA.2, BA.2.12.1, BA.4/BA.5). The limit of detection (LOD) of the assay was 20, 22 and 36 genomic equivalents (GE) per reaction with the Delta, Omicron BA.1 and BA.2 respectively. Clinical validation of the 3-codon assay in the LC480 instrument showed the assay detected 94% (81/86) of the specimens as WT or VOCs and 6% (5/86) of the tests producing indeterminate results compared to sequencing. Sanger sequencing also failed for four samples. None of the specimens were incorrectly identified as WT or as a different VOC by our assay. Thus, excluding specimens with indeterminant results, the assay was 100% sensitive and 100% specific compared to Sanger sequencing for variant identification. This new assay concept can be easily expanded to add newer variants and can serve as a robust diagnostic tool for selecting appropriate monoclonal antibody therapy and rapid VOC surveillance.


Subject(s)
COVID-19 , Magnoliopsida , Humans , COVID-19/diagnosis , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Temperature , COVID-19 Testing
2.
Mod Pathol ; 22(10): 1303-11, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19633649

ABSTRACT

It is uncertain whether uterine leiomyosarcoma arises de novo or in preexisting leiomyoma. Leiomyoma-like areas can be seen associated with uterine leiomyosarcoma, raising the possibility of precursor lesions for uterine leiomyosarcoma. In this study, we examined cases of uterine leiomyosarcoma associated with leiomyoma-like areas at the histological, immunohistochemical and DNA level to further evaluate if benign-looking leiomyoma-like and uterine leiomyosarcoma areas are related. Cases of uterine leiomyosarcoma observed at the New York University Medical Center from 1994 to 2007 were reviewed for the presence of leiomyoma-like areas. Of the 26 cases of uterine leiomyosarcoma observed during this period, 18 cases had an associated leiomyoma-like area (five cellular leiomyoma, four symplastic leiomyoma, four cellular and symplastic leiomyoma and five usual type leiomyoma). Sixteen of the 18 cases were examined immunohistochemically for Ki-67, for estrogen receptor, progesterone receptor and for p53. Immunohistochemical profiles were as expected for leiomyoma-like (the mean expression of p53, ER, PR and Ki-67 at 0.3, 63, 75 and 0.6%, respectively), symplastic leiomyoma-like areas (the mean expression of p53, ER, PR and Ki-67 at 0.6, 85, 89 and 5.5%, respectively) and uterine leiomyosarcoma areas (the mean expression of p53, ER, PR and Ki-67 at 52, 38, 39 and 61%, respectively). In six cases, the leiomyoma-like and uterine leiomyosarcoma areas from each case were examined using high-density oligonucleotide array-CGH to determine genetic aberrations in the two areas. Nearly all the genetic aberrations found in leiomyoma-like areas were also found in the corresponding uterine leiomyosarcoma areas. In addition, uterine leiomyosarcoma areas had additional genetic aberrations. The immunohistochemical profiles and genetic aberrations of the examined cases suggest that uterine leiomyosarcoma could arise from the preexisting leiomyoma-like areas that often have a symplastic or cellular morphology.


Subject(s)
Biomarkers, Tumor/analysis , Gene Expression Profiling , Immunohistochemistry , Leiomyoma/diagnosis , Leiomyosarcoma/diagnosis , Precancerous Conditions/diagnosis , Uterine Neoplasms/diagnosis , Biomarkers, Tumor/genetics , Cell Transformation, Neoplastic/chemistry , Cell Transformation, Neoplastic/genetics , Comparative Genomic Hybridization , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Humans , Ki-67 Antigen/analysis , Leiomyoma/chemistry , Leiomyoma/genetics , Leiomyoma/pathology , Leiomyosarcoma/chemistry , Leiomyosarcoma/genetics , Leiomyosarcoma/pathology , Oligonucleotide Array Sequence Analysis , Precancerous Conditions/chemistry , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Receptors, Estrogen/analysis , Receptors, Progesterone/analysis , Tumor Suppressor Protein p53/analysis , Uterine Neoplasms/chemistry , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology
3.
Cancer Genet Cytogenet ; 192(2): 56-9, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19596254

ABSTRACT

Chondrosarcomas of the bone are malignant hyaline cartilage-forming tumors with an annual incidence rate of 3.6% of all primary bone malignancies in the United States. Specimens of 25 chondrosarcomas (10 grade I, 9 grade II, 1 grade III, and 5 dedifferentiated) from 23 patients were collected from the Department of Pathology at the University Hospital at UMDNJ-New Jersey Medical School from 1996 to 2007. Array-based comparative genomic hybridization (array-CGH) studies were performed on frozen tumor specimens. Recurrent deletions observed in at least in six tumors were 5q13.2, 5q14.2 approximately q21.3, 6q12 approximately q13, 6q16 approximately q25.3, 9p24.2 approximately q12, and 9p21.3. There was a statistically significant association between high-grade tumor (grade III and dedifferentiated) and the recurrent genetic deletions at 5q14.2 approximately q21.3, 6q16 approximately q25.3, 9p24.2 approximately q12, and 9p21.3. There is consistency between increased levels of aneuploidy and the progression of chondrosarcoma from lower to higher grades.


Subject(s)
Chondrosarcoma/genetics , Comparative Genomic Hybridization , Genome, Human/genetics , Oligonucleotide Array Sequence Analysis , Adult , Aged , Aged, 80 and over , Chromosome Deletion , Female , Humans , Male , Middle Aged
4.
Genetics ; 179(3): 1221-35, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18562657

ABSTRACT

Meiotic reciprocal recombination (crossing over) was examined in the outermost 60-80 kb of almost all Saccharomyces cerevisiae chromosomes. These sequences included both repetitive gene-poor subtelomeric heterochromatin-like regions and their adjacent unique gene-rich euchromatin-like regions. Subtelomeric sequences underwent very little crossing over, exhibiting approximately two- to threefold fewer crossovers per kilobase of DNA than the genomic average. Surprisingly, the adjacent euchromatic regions underwent crossing over at twice the average genomic rate and contained at least nine new recombination "hot spots." These results prompted an analysis of existing genetic mapping data, which showed that meiotic reciprocal recombination rates were on average greater near chromosome ends exclusive of the subtelomeres. Thus, the distribution of crossovers in S. cerevisiae appears to resemble that found in several higher eukaryotes where the outermost chromosomal regions show increased crossing over.


Subject(s)
Chromosomes, Fungal/genetics , Meiosis , Recombination, Genetic , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Gene Conversion , Genetic Markers , Physical Chromosome Mapping
5.
Cancer Genet Cytogenet ; 178(2): 151-4, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17954272

ABSTRACT

Karyotyping is a major component of the genetic work-up of patients with dysmorphism. Cytogenetic aberrations close to a known tumor suppressor gene raise important clinical issues because deletion of that tumor suppressor gene can cause genetic predisposition to cancer. We present two cancer-free dysmorphic patients with karyotypes of 46,XX,del(5)(q15q22.3) and 46,XX,del(3)(p25.2~pter). These deletions are close to the APC and VHL genes that confer susceptibility to familial Adenomatous polyposis (OMIM #17510) and von-Hippel-Lindau syndrome (OMIM #193300), respectively. The array-based comparative genomic hybridization (array-CGH) analysis using a custom Agilent 44K oligonucleotide array demonstrated an interstitial 20.7-megabase (Mb) deletion on 5q (chr5: 89,725,638-110,491,345) and a terminal 9.45-Mb deletion on 3p (chr3:pter-9,450,984). According to the March 2006 human reference sequence, the APC gene is located at chr5: 112,101,483-112,209,835 and the VHL gene is located at chr3: 10,158,319-10,168,746. These results indicate that the APC gene is 2,300 kilobases (kb) and the VHL gene is 700 kb away from deleted regions. Southern blot analysis for APC and VHL genes were negative, consistent with array-CGH findings. These results demonstrate the power of array-CCH to assess potential tumor suppressor gene involvement and cancer risk in patients with microscopically visible deletions in areas near tumor suppressors.


Subject(s)
Chromosome Aberrations , Genes, APC , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Adenomatous Polyposis Coli/genetics , Adolescent , Adult , Female , Humans , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Sequence Deletion , von Hippel-Lindau Disease/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...