Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci Health B ; 48(4): 237-42, 2013.
Article in English | MEDLINE | ID: mdl-23374040

ABSTRACT

Dinetofuran (DNT), imidacloprid (IMD) and thiamethoxam (THM) are among the neonicotinoid insecticides widely used for managing insect pests of agricultural and veterinary importance. Environmental occurrence of neonicotinoid in post-application scenario poses unknown issues to human health and ecology. A sorption kinetic study provides much needed information on physico-chemical interaction of neonicotinoid with soil material. In this research study, time-dependent sorption behavior of DNT, IMD and THM in vineyard soil was studied. Sorption kinetics studies were conducted over a period of 96 hours with sampling duration varying from 0, 2, 4, 8, 12, 24, 60 and 96 hours. All three neonicotinoids exhibited very low sorption potential for the soil investigated. Overall percent sorption for all three neonicotinoids was below 20.04 ± 2.03% with highest percent sorption being observed for IMD followed by DNT and THM. All three neonicotinoids are highly soluble with solubility increasing with IMD < THM < DNT. Although, DNT has the highest solubility among all three neonicotinoids investigated, it exhibited higher percent sorption compared to THM, indicating factors other than solubility influenced the sorption kinetics. Low sorption potential of neonicotinoids indicates greater leaching potential with regard to groundwater and surface water contamination.


Subject(s)
Guanidines/chemistry , Imidazoles/chemistry , Insecticides/chemistry , Nitro Compounds/chemistry , Oxazines/chemistry , Soil/chemistry , Thiazoles/chemistry , Adsorption , Kinetics , Neonicotinoids , Soil Pollutants/chemistry , Thiamethoxam
2.
J Environ Manage ; 92(7): 1874-81, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21477917

ABSTRACT

In animal agriculture, sulfonamides are one of the routinely used groups of antimicrobials for therapeutic and sub-therapeutic purposes. It is observed that, the animals when administered the antimicrobials, often do not completely metabolize them; and excrete the partially metabolized forms into the environment. Due to the continued use of antimicrobials and disposal of untreated waste, widespread occurrence of partially metabolized antimicrobials in aquatic and terrestrial environments has been reported in various scientific journals. In this research, the mobility of two sulfonamides - sulfamethazine (SMN), sulfathiazole (STZ) and a conservative bromide tracer was investigated in three soils collected from regions in the United States with large number of concentrated animal-feed operations. Results of a series of column studies indicate that the mobility of these two sulfonamides was dependent on pH, soil charge density, and contact time. At low pH and high charge density, substantial retention of sulfonamides was observed in all three soils investigated, due to the increased fraction of cationic and neutral forms of the sulfonamides. Conversely, enhanced mobility was observed at high pH, where the sulfonamides are predominantly in the anionic form. The results indicate that when both SMN and STZ are predominantly in anionic forms, their mobility approximates the mobility of a conservative bromide tracer. This observation is consistent for the mobility of both SMN and STZ individually, and also in the presence of several other antimicrobials in all three soils investigated. Higher contact time indicates lower mobility due to increased interaction with soil material.


Subject(s)
Anti-Infective Agents/analysis , Bromides/analysis , Soil/analysis , Sulfonamides/analysis , Adsorption , Anti-Infective Agents/chemistry , Bromides/chemistry , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Molecular Structure , Sulfonamides/chemistry , Time Factors , United States
3.
J Agric Food Chem ; 55(4): 1370-6, 2007 Feb 21.
Article in English | MEDLINE | ID: mdl-17300155

ABSTRACT

Sorption of sulfamethazine (SMN) and sulfathiazole (STZ) was investigated in three soils, a North Carolina loamy sand, an Iowa sandy loam, and a Missouri loam, under various pH conditions. A significant increase in the sorption coefficient (KD) was observed in all three soils, as the sulfonamides converted from an anionic form at higher pH to a neutral/cationic form at lower pH. Above pH 7.5, sulfonamides exist primarily in anionic form and have higher aqueous solubility and no cationic character, thereby consequently leading to lower sorption to soils. The effect of speciation on sorption is not the same for all sulfonamides; it is a function of the pH of the soil and the pKa of the sulfonamides. The results indicate that, for the soils under investigation, SMN has comparatively lower KD values than STZ. The pH-dependent sorption of sulfonamides was observed to be consistent in all three soils investigated. The KD values for each speciated form-cationic, neutral, and anionic-were calculated using an empirical model in which the species-specific sorption coefficients (KD0, KD1, and KD2) were weighted with their respective fractions present at any given pH.


Subject(s)
Anti-Infective Agents/chemistry , Soil/analysis , Sorbic Acid/chemistry , Sulfonamides/chemistry , Adsorption , Chemical Phenomena , Chemistry, Physical , Hydrogen-Ion Concentration , Iowa , Missouri , North Carolina
SELECTION OF CITATIONS
SEARCH DETAIL
...