Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 623(7985): 90-94, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853120

ABSTRACT

The observation that many lavas associated with mantle plumes have higher 3He/4He ratios than the upper convecting mantle underpins geophysical, geodynamic and geochemical models of Earth's deep interior. High 3He/4He ratios are thought to derive from the solar nebula or from solar-wind-irradiated material that became incorporated into Earth during early planetary accretion. Traditionally, this high-3He/4He component has been considered intrinsic to the mantle, having avoided outgassing caused by giant impacts and billions of years of mantle convection1-4. Here we report the highest magmatic 3He/4He ratio(67.2 ± 1.8 times the atmospheric ratio) yet measured in terrestrial igneous rocks, in olivines from Baffin Island lavas. We argue that the extremely high-3He/4He helium in these lavas might derive from Earth's core5-9. The viability of the core hypothesis relaxes the long-standing constraint-based on noble gases in lavas associated with mantle plumes globally-that volatile elements from the solar nebula have survived in the mantle since the early stages of accretion.

2.
Nature ; 580(7803): 367-371, 2020 04.
Article in English | MEDLINE | ID: mdl-32296193

ABSTRACT

Nitrogen is the main constituent of the Earth's atmosphere, but its provenance in the Earth's mantle remains uncertain. The relative contribution of primordial nitrogen inherited during the Earth's accretion versus that subducted from the Earth's surface is unclear1-6. Here we show that the mantle may have retained remnants of such primordial nitrogen. We use the rare 15N15N isotopologue of N2 as a new tracer of air contamination in volcanic gas effusions. By constraining air contamination in gases from Iceland, Eifel (Germany) and Yellowstone (USA), we derive estimates of mantle δ15N (the fractional difference in 15N/14N from air), N2/36Ar and N2/3He. Our results show that negative δ15N values observed in gases, previously regarded as indicating a mantle origin for nitrogen7-10, in fact represent dominantly air-derived N2 that experienced 15N/14N fractionation in hydrothermal systems. Using two-component mixing models to correct for this effect, the 15N15N data allow extrapolations that characterize mantle endmember δ15N, N2/36Ar and N2/3He values. We show that the Eifel region has slightly increased δ15N and N2/36Ar values relative to estimates for the convective mantle provided by mid-ocean-ridge basalts11, consistent with subducted nitrogen being added to the mantle source. In contrast, we find that whereas the Yellowstone plume has δ15N values substantially greater than that of the convective mantle, resembling surface components12-15, its N2/36Ar and N2/3He ratios are indistinguishable from those of the convective mantle. This observation raises the possibility that the plume hosts a primordial component. We provide a test of the subduction hypothesis with a two-box model, describing the evolution of mantle and surface nitrogen through geological time. We show that the effect of subduction on the deep nitrogen cycle may be less important than has been suggested by previous investigations. We propose instead that high mid-ocean-ridge basalt and plume δ15N values may both be dominantly primordial features.

3.
Nature ; 514(7522): 355-8, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-25318524

ABSTRACT

Hotspot lavas erupted at ocean islands exhibit tremendous isotopic variability, indicating that there are numerous mantle components hosted in upwelling mantle plumes that generate volcanism at hotspots like Hawaii and Samoa. However, it is not known how the surface expression of the various geochemical components observed in hotspot volcanoes relates to their spatial distribution within the plume. Here we present a relationship between He and Pb isotopes in Samoan lavas that places severe constraints on the distribution of geochemical species within the plume. The Pb-isotopic compositions of the Samoan lavas reveal several distinct geochemical groups, each corresponding to a different geographic lineament of volcanoes. Each group has a signature associated with one of four mantle endmembers with low (3)He/(4)He: EMII (enriched mantle 2), EMI (enriched mantle 1), HIMU (high µ = (238)U/(204)Pb) and DM (depleted mantle). Critically, these four geochemical groups trend towards a common region of Pb-isotopic space with high (3)He/(4)He. This observation is consistent with several low-(3)He/(4)He components in the plume mixing with a common high-(3)He/(4)He component, but not mixing much with each other. The mixing relationships inferred from the new He and Pb isotopic data provide the clearest picture yet of the geochemical geometry of a mantle plume, and are best explained by a high-(3)He/(4)He plume matrix that hosts, and mixes with, several distinct low-(3)He/(4)He components.

4.
Proc Natl Acad Sci U S A ; 107(32): 14020-5, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-20660317

ABSTRACT

Thirty years after the first discovery of high-temperature submarine venting, the vast majority of the global mid-ocean ridge remains unexplored for hydrothermal activity. Of particular interest are the world's ultraslow spreading ridges that were the last to be demonstrated to host high-temperature venting but may host systems particularly relevant to prebiotic chemistry and the origins of life. Here we report evidence for previously unknown, diverse, and very deep hydrothermal vents along the approximately 110 km long, ultraslow spreading Mid-Cayman Rise (MCR). Our data indicate that the MCR hosts at least three discrete hydrothermal sites, each representing a different type of water-rock interaction, including both mafic and ultramafic systems and, at approximately 5,000 m, the deepest known hydrothermal vent. Although submarine hydrothermal circulation, in which seawater percolates through and reacts with host lithologies, occurs on all mid-ocean ridges, the diversity of vent types identified here and their relative geographic isolation make the MCR unique in the oceans. These new sites offer prospects for an expanded range of vent-fluid compositions, varieties of abiotic organic chemical synthesis and extremophile microorganisms, and unparalleled faunal biodiversity--all in close proximity.


Subject(s)
Hot Temperature , Seawater , Biodiversity , Geography , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...