Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Thorac Oncol ; 16(7): 1149-1165, 2021 07.
Article in English | MEDLINE | ID: mdl-33839363

ABSTRACT

INTRODUCTION: NRG1 rearrangements produce chimeric ligands that subvert the ERBB pathway to drive tumorigenesis. A better understanding of the signaling networks that mediate transformation by NRG1 fusions is needed to inform effective therapeutic strategies. Unfortunately, this has been hampered by a paucity of patient-derived disease models that faithfully recapitulate this molecularly defined cancer subset. METHODS: Patient-derived xenograft (PDX) and cell line models were established from NRG1-rearranged lung adenocarcinoma samples. Transcriptomic, proteomic, and biochemical analyses were performed to identify activated pathways. Efficacy studies were conducted to evaluate HER3- and MTOR-directed therapies. RESULTS: We established a pair of PDX and cell line models of invasive mucinous lung adenocarcinoma (LUAD) (LUAD-0061AS3, SLC3A2-NRG1), representing the first reported paired in vitro and in vivo model of NRG1-driven tumors. Growth of LUAD-0061AS3 models was reduced by the anti-HER3 antibody GSK2849330. Transcriptomic profiling revealed activation of the MTOR pathway in lung tumor samples with NRG1 fusions. Phosphorylation of several MTOR effectors (S6 and 4EBP1) was higher in LUAD-0061AS3 cells compared with human bronchial epithelial cells and the breast cancer cell line MDA-MB-175-VII (DOC4-NRG1 fusion). Accordingly, LUAD-0061AS3 cells were more sensitive to MTOR inhibitors than MDA-MB-175-VII cells and targeting the MTOR pathway with rapamycin blocked growth of LUAD-0061AS3 PDX tumors in vivo. In contrast, MDA-MB-175-VII breast cancer cells had higher MAPK pathway activation and were more sensitive to MEK inhibition. CONCLUSIONS: We identify the MTOR pathway as a candidate vulnerability in NRG1 fusion-positive lung adenocarcinoma that may warrant further preclinical evaluation, with the eventual goal of finding additional therapeutic options for patients in whom ERBB-directed therapy fails. Moreover, our results uncover heterogeneity in downstream oncogenic signaling among NRG1-rearranged cancers, possibly tumor type-dependent, the therapeutic significance of which requires additional investigation.


Subject(s)
Lung Neoplasms , Proteomics , Cell Line, Tumor , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Neuregulin-1/genetics , Oncogene Proteins, Fusion/genetics , TOR Serine-Threonine Kinases
2.
Dis Model Mech ; 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33318047

ABSTRACT

Multi-kinase RET inhibitors, such as cabozantinib and RXDX-105, are active in lung cancer patients with RET fusions; however, the overall response rates to these two drugs are unsatisfactory compared to other targeted therapy paradigms. Moreover, these inhibitors may have different efficacies against RET rearrangements depending on the upstream fusion partner. A comprehensive preclinical analysis of the efficacy of RET inhibitors is lacking due to a paucity of disease models harboring RET rearrangements. Here we generated two new patient-derived xenograft (PDX) models, one new patient-derived cell line, one PDX-derived cell line, and several isogenic cell lines with RET fusions. Using these models, we re-examined the efficacy and mechanism of action of cabozantinib and found that this RET inhibitor was effective at blocking growth of cell lines, activating caspase 3/7 and inhibiting activation of ERK and AKT. Cabozantinib treatment of mice bearing RET-fusion-positive cell line xenografts and two PDXs significantly reduced tumor proliferation without adverse toxicity. Moreover, cabozantinib was effective at reducing growth of a lung cancer PDX that was not responsive to RXDX-105. Transcriptomic analysis of lung tumors and cell lines with RET alterations showed activation of a MYC signature and this was suppressed by treatment of cell lines with cabozantinib. MYC protein levels were rapidly depleted following cabozantinib treatment. Taken together, our results demonstrate that cabozantinib is an effective agent in preclinical models harboring RET rearrangements with three different 5' fusion partners (CCDC6, KIF5B and TRIM33). Notably, we identify MYC as a protein that is upregulated by RET expression and down-regulated by cabozantinib treatment, opening up potentially new therapeutic avenues for combinatorial targeting RET-fusion driven lung cancers. The novel RET fusion-dependent preclinical models described herein represent valuable tools for further refinement of current therapies and the evaluation of novel therapeutic strategies.

3.
J Thorac Oncol ; 14(5): 802-815, 2019 05.
Article in English | MEDLINE | ID: mdl-30831205

ABSTRACT

INTRODUCTION: Multiple genetic mechanisms have been identified in EGFR-mutant lung cancers as mediators of acquired resistance (AR) to EGFR tyrosine kinase inhibitors (TKIs), but many cases still lack a known mechanism. METHODS: To identify novel mechanisms of AR, we performed targeted large panel sequencing of samples from 374 consecutive patients with metastatic EGFR-mutant lung cancer, including 174 post-TKI samples, of which 38 also had a matched pre-TKI sample. Alterations hypothesized to confer AR were introduced into drug-sensitive EGFR-mutant lung cancer cell lines (H1975, HCC827, and PC9) by using clustered regularly interspaced short palindromic repeats/Cas9 genome editing. MSK-LX138cl, a cell line with EGFR exon 19 deletion (ex19del) and praja ring finger ubiquitin ligase 2 gene (PJA2)/BRAF fusion, was generated from an EGFR TKI-resistant patient sample. RESULTS: We identified four patients (2.3%) with a BRAF fusion (three with acylglycerol kinase gene (AGK)/BRAF and one with PJA2/BRAF) in samples obtained at AR to EGFR TKI therapy (two posterlotinib samples and two posterlotinib and postosimertinib samples). Pre-TKI samples were available for two of four patients and both were negative for BRAF fusion. Induction of AGK/BRAF fusion in H1975 (L858R + T790M), PC9 (ex19del) and HCC827 (ex19del) cells increased phosphorylation of BRAF, MEK1/2, ERK1/2, and signal transducer and activator of transcription 3 and conferred resistance to growth inhibition by osimertinib. MEK inhibition with trametinib synergized with osimertinib to block growth. Alternately, a pan-RAF inhibitor as a single agent blocked growth of all cell lines with mutant EGFR and BRAF fusion. CONCLUSION: BRAF fusion is a mechanism of AR to EGFR TKI therapy in approximately 2% of patients. Combined inhibition of EGFR and MEK (with osimertinib and trametinib) or BRAF (with a pan-RAF inhibitor) are potential therapeutic strategies that should be explored.


Subject(s)
Adenocarcinoma of Lung/genetics , Drug Resistance, Neoplasm/genetics , ErbB Receptors/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Aged , ErbB Receptors/pharmacology , Female , Humans , Male , Middle Aged , Mutation
4.
Clin Cancer Res ; 25(4): 1248-1260, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30352902

ABSTRACT

PURPOSE: MET exon 14 splice site alterations that cause exon skipping at the mRNA level (METex14) are actionable oncogenic drivers amenable to therapy with MET tyrosine kinase inhibitors (TKI); however, secondary resistance eventually arises in most cases while other tumors display primary resistance. Beyond relatively uncommon on-target MET kinase domain mutations, mechanisms underlying primary and acquired resistance remain unclear. EXPERIMENTAL DESIGN: We examined clinical and genomic data from 113 patients with lung cancer with METex14. MET TKI resistance due to KRAS mutation was functionally evaluated using in vivo and in vitro models. RESULTS: Five of 113 patients (4.4%) with METex14 had concurrent KRAS G12 mutations, a rate of KRAS cooccurrence significantly higher than in other major driver-defined lung cancer subsets. In one patient, the KRAS mutation was acquired post-crizotinib, while the remaining 4 METex14 patients harbored the KRAS mutation prior to MET TKI therapy. Gene set enrichment analysis of transcriptomic data from lung cancers with METex14 revealed preferential activation of the KRAS pathway. Moreover, expression of oncogenic KRAS enhanced MET expression. Using isogenic and patient-derived models, we show that KRAS mutation results in constitutive activation of RAS/ERK signaling and resistance to MET inhibition. Dual inhibition of MET or EGFR/ERBB2 and MEK reduced growth of cell line and xenograft models. CONCLUSIONS: KRAS mutation is a recurrent mechanism of primary and secondary resistance to MET TKIs in METex14 lung cancers. Dual inhibition of MET or EGFR/ERBB2 and MEK may represent a potential therapeutic approach in this molecular cohort.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Aged , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Crizotinib/administration & dosage , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Exons/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Heterografts , High-Throughput Nucleotide Sequencing , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/genetics , Male , Mice , Middle Aged , Molecular Targeted Therapy , Mutation , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...