Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Cancer ; 5(1): 66-84, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38151625

ABSTRACT

Chromosomal instability (CIN) is a hallmark of cancer, caused by persistent errors in chromosome segregation during mitosis. Aggressive cancers like high-grade serous ovarian cancer (HGSOC) and triple-negative breast cancer (TNBC) have a high frequency of CIN and TP53 mutations. Here, we show that inhibitors of the KIF18A motor protein activate the mitotic checkpoint and selectively kill chromosomally unstable cancer cells. Sensitivity to KIF18A inhibition is enriched in TP53-mutant HGSOC and TNBC cell lines with CIN features, including in a subset of CCNE1-amplified, CDK4-CDK6-inhibitor-resistant and BRCA1-altered cell line models. Our KIF18A inhibitors have minimal detrimental effects on human bone marrow cells in culture, distinct from other anti-mitotic agents. In mice, inhibition of KIF18A leads to robust anti-cancer effects with tumor regression observed in human HGSOC and TNBC models at well-tolerated doses. Collectively, our results provide a rational therapeutic strategy for selective targeting of CIN cancers via KIF18A inhibition.


Subject(s)
Kinesins , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Kinesins/genetics , Kinesins/metabolism , Mitosis/genetics , Cell Line , M Phase Cell Cycle Checkpoints
2.
Sci Transl Med ; 10(472)2018 12 19.
Article in English | MEDLINE | ID: mdl-30567927

ABSTRACT

Glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) has been identified in multiple genome-wide association studies (GWAS) as a contributor to obesity, and GIPR knockout mice are protected against diet-induced obesity (DIO). On the basis of this genetic evidence, we developed anti-GIPR antagonistic antibodies as a potential therapeutic strategy for the treatment of obesity and observed that a mouse anti-murine GIPR antibody (muGIPR-Ab) protected against body weight gain, improved multiple metabolic parameters, and was associated with reduced food intake and resting respiratory exchange ratio (RER) in DIO mice. We replicated these results in obese nonhuman primates (NHPs) using an anti-human GIPR antibody (hGIPR-Ab) and found that weight loss was more pronounced than in mice. In addition, we observed enhanced weight loss in DIO mice and NHPs when anti-GIPR antibodies were codosed with glucagon-like peptide-1 receptor (GLP-1R) agonists. Mechanistic and crystallographic studies demonstrated that hGIPR-Ab displaced GIP and bound to GIPR using the same conserved hydrophobic residues as GIP. Further, using a conditional knockout mouse model, we excluded the role of GIPR in pancreatic ß-cells in the regulation of body weight and response to GIPR antagonism. In conclusion, these data provide preclinical validation of a therapeutic approach to treat obesity with anti-GIPR antibodies.


Subject(s)
Glucagon-Like Peptide-1 Receptor/agonists , Obesity/drug therapy , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Adipocytes/metabolism , Animals , Antibodies/pharmacology , Antibodies/therapeutic use , Diet , Drug Therapy, Combination , Feeding Behavior , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptides/analogs & derivatives , Glucagon-Like Peptides/pharmacology , Glucagon-Like Peptides/therapeutic use , Humans , Immunoglobulin Fc Fragments/pharmacology , Immunoglobulin Fc Fragments/therapeutic use , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Liraglutide/pharmacology , Liraglutide/therapeutic use , Mice, Obese , Obesity/pathology , Primates , Receptors, Gastrointestinal Hormone/metabolism , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Respiration , Weight Gain/drug effects , Weight Loss/drug effects
3.
PLoS One ; 11(9): e0163366, 2016.
Article in English | MEDLINE | ID: mdl-27658254

ABSTRACT

Panitumumab and cetuximab target the epidermal growth factor receptor for the treatment of metastatic colorectal cancer. These therapies provide a significant survival benefit to patients with metastatic colorectal cancer with wild-type RAS. A single point mutation in the ectodomain of EGFR (S468R) confers acquired or secondary resistance in cetuximab treated patients, which is not observed in panitumumab-treated patients. Structural and biophysical studies presented here show this mutation directly blocks cetuximab binding to EGFR domain III and describes a unique mechanism by which panitumumab uses a central cavity to accommodate this mutation.

4.
Anal Chem ; 88(24): 12427-12436, 2016 12 20.
Article in English | MEDLINE | ID: mdl-28193065

ABSTRACT

Over the past two decades, orthogonal acceleration time-of-flight has been the de facto analyzer for solution and membrane-soluble protein native mass spectrometry (MS) studies; this however is gradually changing. Three MS instruments are compared, the Q-ToF, Orbitrap, and the FT-ICR, to analyze, under native instrument and buffer conditions, the seven-transmembrane helical protein bacteriorhodopsin-octylglucoside micelle and the empty nanodisc (MSP1D1-Nd) using both MS and tandem-MS modes of operation. Bacteriorhodopsin can be released from the octylglucoside-micelle efficiently on all three instruments (MS-mode), producing a narrow charge state distribution (z = 8+ to 10+) by either increasing the source lens or collision cell (or HCD) voltages. A lower center-of-mass collision energy (0.20-0.41 eV) is required for optimal bacteriorhodopsin liberation on the FT-ICR, in comparison to the Q-ToF and Orbitrap instruments (0.29-2.47 eV). The empty MSP1D1-Nd can be measured with relative ease on all three instruments, resulting in a highly complex spectrum of overlapping, polydisperse charge states. There is a measurable difference in MSP1D1-Nd charge state distribution (z = 15+ to 26+), average molecular weight (141.7 to 169.6 kDa), and phospholipid incorporation number (143 to 184) under low activation conditions. Utilizing tandem-MS, bacteriorhodopsin can be effectively liberated from the octylglucoside-micelle by collisional (Q-ToF and FT-ICR) or continuous IRMPD activation (FT-ICR). MSP1D1-Nd spectral complexity can also be significantly reduced by tandem-MS (Q-ToF and FT-ICR) followed by mild collisional or continuous IRMPD activation, resulting in a spectrum in which the charge state and phospholipid incorporation levels can easily be determined.


Subject(s)
Bacteriorhodopsins/chemistry , Glucosides/chemistry , Mass Spectrometry/methods , Micelles , Cyclotrons , Fourier Analysis , Halobacterium salinarum/chemistry , Models, Molecular , Nanostructures/chemistry , Protein Conformation , Purple Membrane/chemistry
5.
Biochim Biophys Acta ; 1848(10 Pt A): 1974-80, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26074010

ABSTRACT

Integral membrane proteins (IMPs) are of therapeutic interest and are targeted by a majority of approved drugs. It's difficult to express, purify, and maintain the functional conformation of IMPs. Nanodisc presents a reliable method to solubilize and stabilize IMPs in detergent-free condition. In this study, we demonstrate the assembly and purification of a chimeric ion channel, KcsA-Kv1.3 Nanodisc. We further detail biophysical analysis of the assembled Nanodisc using analytical ultracentrifugation (AUC), surface plasmon resonance (SPR), and back scattering interferometry (BSI). AUC is employed to determine the molecular composition of the empty and KcsA-Kv1.3 Nanodisc. Combination of SPR and BSI overcomes each other's limitation and provides insight of equilibrium binding properties of peptide and small molecule ligands to KcsA-Kv1.3.


Subject(s)
Bacterial Proteins/chemistry , Kv1.3 Potassium Channel/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Potassium Channel Blockers/chemistry , Potassium Channels/chemistry , Amino Acid Sequence , Bacterial Proteins/antagonists & inhibitors , Binding Sites , Kv1.3 Potassium Channel/antagonists & inhibitors , Molecular Sequence Data , Multiprotein Complexes/chemical synthesis , Multiprotein Complexes/ultrastructure , Protein Binding
6.
J Biomol Screen ; 19(7): 1014-23, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24717911

ABSTRACT

In the nuclei of hepatocytes, glucokinase regulatory protein (GKRP) modulates the activity of glucokinase (GK), a key regulator of glucose homeostasis. Currently, direct activators of GK (GKAs) are in development for the treatment of type 2 diabetes. However, this approach is generally associated with a risk of hypoglycemia. To mitigate such risk, we target the GKRP regulation, which indirectly restores GK activity. Here we describe a screening strategy to look specifically for GKRP modulators, in addition to traditional GKAs. Two high-throughput screening campaigns were performed with our compound libraries using a luminescence assay format, one with GK alone and the other with a GK/GKRP complex in the presence of sorbitol-6-phosphate (S6P). By a subtraction method in the hit triage process of these campaigns, we discovered two close analogs that bind GKRP specifically with sub-µM potency to a site distinct from where fructose-1-phosphate binds. These small molecules are first-in-class allosteric modulators of the GK/GKRP interaction and are fully active even in the presence of S6P. Activation of GK by this particular mechanism, without altering the enzymatic profile, represents a novel pharmacologic modality of intervention in the GK/GKRP pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Drug Discovery/methods , Glucokinase/chemistry , Adenosine Triphosphate/chemistry , Allosteric Regulation , Animals , Blood Glucose/analysis , Calorimetry , Diabetes Mellitus, Type 2/drug therapy , Fluorescence , Fluorometry , Fructosephosphates/chemistry , Hepatocytes/metabolism , Hexosephosphates/chemistry , Homeostasis , Humans , Hypoglycemia/prevention & control , Inhibitory Concentration 50 , Luminescence , Protein Binding , Protein Conformation , Protein Interaction Mapping , Rats , Surface Plasmon Resonance
7.
J Med Chem ; 57(2): 309-24, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24405172

ABSTRACT

Small molecule activators of glucokinase have shown robust efficacy in both preclinical models and humans. However, overactivation of glucokinase (GK) can cause excessive glucose turnover, leading to hypoglycemia. To circumvent this adverse side effect, we chose to modulate GK activity by targeting the endogenous inhibitor of GK, glucokinase regulatory protein (GKRP). Disrupting the GK-GKRP complex results in an increase in the amount of unbound cytosolic GK without altering the inherent kinetics of the enzyme. Herein we report the identification of compounds that efficiently disrupt the GK-GKRP interaction via a previously unknown binding pocket. Using a structure-based approach, the potency of the initial hit was improved to provide 25 (AMG-1694). When dosed in ZDF rats, 25 showed both a robust pharmacodynamic effect as well as a statistically significant reduction in glucose. Additionally, hypoglycemia was not observed in either the hyperglycemic or normal rats.


Subject(s)
Carrier Proteins/metabolism , Glucokinase/metabolism , Hypoglycemic Agents/chemistry , Piperazines/chemistry , Animals , Binding Sites , Carrier Proteins/chemistry , Crystallography, X-Ray , Glucokinase/chemistry , Hepatocytes/drug effects , Hepatocytes/metabolism , High-Throughput Screening Assays , Humans , Hypoglycemia/chemically induced , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/pharmacology , Piperazines/adverse effects , Piperazines/pharmacology , Protein Conformation , Protein Transport , Rats , Rats, Zucker , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/adverse effects , Sulfonamides/chemistry , Sulfonamides/pharmacology
8.
Nature ; 504(7480): 437-40, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24226772

ABSTRACT

Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic ß-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Adaptor Proteins, Signal Transducing , Animals , Blood Glucose/metabolism , Carrier Proteins/metabolism , Cell Nucleus/enzymology , Crystallography, X-Ray , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/enzymology , Disease Models, Animal , Hepatocytes , Humans , Hyperglycemia/blood , Hyperglycemia/drug therapy , Hyperglycemia/enzymology , Hypoglycemic Agents/chemistry , Liver/cytology , Liver/enzymology , Liver/metabolism , Male , Models, Molecular , Organ Specificity , Phosphorylation/drug effects , Piperazines/chemistry , Piperazines/metabolism , Piperazines/pharmacology , Piperazines/therapeutic use , Protein Binding/drug effects , Protein Transport/drug effects , Rats , Rats, Wistar , Sulfonamides/chemistry , Sulfonamides/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
9.
Cancer Res ; 71(17): 5818-26, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21742770

ABSTRACT

Despite the prevalence of KRAS mutations in human cancers, there remain no targeted therapies for treatment. The serine-threonine kinase STK33 has been proposed to be required for the survival of mutant KRAS-dependent cell lines, suggesting that small molecule kinase inhibitors of STK33 may be useful to treat KRAS-dependent tumors. In this study, we investigated the role of STK33 in mutant KRAS human cancer cells using RNA interference, dominant mutant overexpression, and small molecule inhibitors. As expected, KRAS downregulation decreased the survival of KRAS-dependent cells. In contrast, STK33 downregulation or dominant mutant overexpression had no effect on KRAS signaling or survival of these cells. Similarly, a synthetic lethal siRNA screen conducted in a broad panel of KRAS wild-type or mutant cells identified KRAS but not STK33 as essential for survival. We also obtained similar negative results using small molecule inhibitors of the STK33 kinase identified by high-throughput screening. Taken together, our findings refute earlier proposals that STK33 inhibition may be a useful therapeutic approach to target human KRAS mutant tumors.


Subject(s)
Neoplasms/enzymology , Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , ras Proteins/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Knockdown Techniques , Humans , Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins p21(ras) , RNA Interference
10.
J Am Chem Soc ; 131(46): 16654-5, 2009 Nov 25.
Article in English | MEDLINE | ID: mdl-19886658

ABSTRACT

In aqueous solution, azaquinolone inhibitors bind to prolyl 4-hydroxylase in two different orientations, as first detected by (19)F spectroscopy. This contrasts with the crystallographic structure where only one orientation has been determined. Dissection of the metal binding properties of the enzyme allowed structures of both complexes to be obtained in solution from (19)F and (13)C dipolar shifts in a labeled ligand.


Subject(s)
Enzyme Inhibitors/chemistry , Naphthyridines/chemistry , Procollagen-Proline Dioxygenase/antagonists & inhibitors , Procollagen-Proline Dioxygenase/chemistry , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/pharmacology , Humans , Naphthyridines/pharmacology , Nuclear Magnetic Resonance, Biomolecular
11.
Comb Chem High Throughput Screen ; 12(8): 760-71, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19531013

ABSTRACT

This manuscript describes the discovery and characterization of inhibitors of the lipid phosphatase SHIP2, an important target for the treatment of Type 2 diabetes, using the Automated Ligand Identification System. ALIS is an affinity selection-mass spectrometry platform for label-free, high throughput screening of mixture-based combinatorial libraries. We detail the mass-encoded synthesis of a library that yielded NGD-61338, a pyrazole-based SHIP2 inhibitor. Quantitative ALIS affinity measurements and inhibition of SHIP2 enzymatic activity indicate that this compound has micromolar binding affinity and inhibitory activity for this target. This inhibitor, which does not contain a phosphatase "warhead," binds the active site of SHIP2 as determined by ALIS-based competition experiments with the enzyme's natural substrate, phosphatidylinositol 3,4,5-triphosphate (PIP3). Structure-activity relationships for NGD-61338 and two other ligand classes discovered by ALIS screening were explored using a combination of combinatorial library synthesis and ALIS-enabled affinity ranking in compound mixtures.


Subject(s)
Combinatorial Chemistry Techniques , Enzyme Inhibitors/analysis , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays/methods , Mass Spectrometry/methods , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphoric Monoester Hydrolases/metabolism , Catalytic Domain , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Inositol Polyphosphate 5-Phosphatases , Molecular Structure , Pyrazoles/analysis , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Stereoisomerism , Structure-Activity Relationship
12.
Anal Biochem ; 384(2): 213-23, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-18952043

ABSTRACT

The human hypoxia-inducible factor prolyl hydroxylases 1, 2, and 3 (HIF-PHD1, -2, and -3) are thought to act as proximal sensors of cellular hypoxia by virtue of their mechanism-based dependence on molecular oxygen. These 2-oxoglutarate (2-OG) and non-heme iron-dependent oxygenases constitutively hydroxylate HIF, resulting in high-affinity binding to Von Hippel-Lindau protein (pVHL). Some reported affinities for the HIF-PHDs for 2-OG and iron approach the estimated physiological concentrations for these cofactors, suggesting that the system as described is not catalytically optimal. Here we report the enzymatic characterization of full-length recombinant human HIF-PHD2 using a novel and sensitive catalytic assay. We demonstrated submicromolar affinities for 2-OG and ferrous iron and HIF-PHD2 Km values for oxygen that are greater than atmospheric oxygen levels, suggesting that molecular oxygen is indeed the key regulator of this pathway. In addition, we observed enhancement of HIF-PHD2 catalytic activity in the presence of ascorbic acid with only minor modifications of HIF-PHD2 requirements for 2-OG, and a detailed pH study demonstrated optimal HIF-PHD2 catalytic activity at pH 6.0. Lastly, we used this sensitive and facile assay to rapidly perform a large high-throughput screen of a chemical library to successfully identify and characterize novel 2-OG competitive inhibitors of HIF-PHD2.


Subject(s)
Enzyme Inhibitors/pharmacology , Fluorescence Resonance Energy Transfer/methods , Procollagen-Proline Dioxygenase/antagonists & inhibitors , Procollagen-Proline Dioxygenase/chemistry , Ascorbic Acid/metabolism , Enzyme Inhibitors/analysis , Humans , Hydrogen-Ion Concentration , Hypoxia-Inducible Factor-Proline Dioxygenases , Ketoglutaric Acids/metabolism , Kinetics , Models, Biological , Oxygen/metabolism , Procollagen-Proline Dioxygenase/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
13.
Assay Drug Dev Technol ; 5(1): 105-15, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17355203

ABSTRACT

11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes the interconversion of inert glucocorticoid (cortisone) to the active glucocorticoid (cortisol) and is enriched in liver and fat tissues. Increasing evidence suggests that selective inhibition of 11beta-HSD1 may reduce the excess glucocorticoid levels that underlie the etiology of many common disorders that constitute the metabolic syndrome. Measurement of 11beta-HSD1 activity has historically involved the detection of cortisol by methods unfavorable for large-scale screening, such as high performance liquid chromatography or thin layer chromatography. Here we describe the development and validation of novel homogeneous time-resolved fluorescence resonance energy transfer (TR-FRET) and electrochemiluminescence assays for the measurement of cortisol. These non-radioactive assays were easy to perform and produced robust results with reference compound values comparable to those obtained by conventional methods. The TR-FRET assay was easily automated and was successfully employed for the high-throughput screening of a large compound library for inhibitors of purified human recombinant 11beta-HSD1.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/analysis , 11-beta-Hydroxysteroid Dehydrogenase Type 1/chemistry , Electrochemistry/methods , Fluorescence Resonance Energy Transfer/methods , Hydrocortisone/analysis , Luminescent Measurements/methods , Microchemistry/methods , Humans , Radioisotope Dilution Technique , Reproducibility of Results , Sensitivity and Specificity
14.
Proc Natl Acad Sci U S A ; 103(26): 9814-9, 2006 Jun 27.
Article in English | MEDLINE | ID: mdl-16782814

ABSTRACT

Cellular and physiological responses to changes in dioxygen levels in metazoans are mediated via the posttranslational oxidation of hypoxia-inducible transcription factor (HIF). Hydroxylation of conserved prolyl residues in the HIF-alpha subunit, catalyzed by HIF prolyl-hydroxylases (PHDs), signals for its proteasomal degradation. The requirement of the PHDs for dioxygen links changes in dioxygen levels with the transcriptional regulation of the gene array that enables the cellular response to chronic hypoxia; the PHDs thus act as an oxygen-sensing component of the HIF system, and their inhibition mimics the hypoxic response. We describe crystal structures of the catalytic domain of human PHD2, an important prolyl-4-hydroxylase in the human hypoxic response in normal cells, in complex with Fe(II) and an inhibitor to 1.7 A resolution. PHD2 crystallizes as a homotrimer and contains a double-stranded beta-helix core fold common to the Fe(II) and 2-oxoglutarate-dependant dioxygenase family, the residues of which are well conserved in the three human PHD enzymes (PHD 1-3). The structure provides insights into the hypoxic response, helps to rationalize a clinically observed mutation leading to familial erythrocytosis, and will aid in the design of PHD selective inhibitors for the treatment of anemia and ischemic disease.


Subject(s)
Catalytic Domain , Oxygen/metabolism , Procollagen-Proline Dioxygenase/chemistry , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases , Procollagen-Proline Dioxygenase/antagonists & inhibitors , Procollagen-Proline Dioxygenase/genetics , Protein Conformation , von Hippel-Lindau Disease/genetics
15.
Assay Drug Dev Technol ; 4(2): 175-83, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16712421

ABSTRACT

SH2 domain-containing inositol 5-phosphatase 2 (SHIP2) is a potential drug target for the treatment of type 2 diabetes. This enzyme serves as a negative regulator of insulin-mediated signal transduction by catalyzing the dephosphorylation of the second messenger lipid molecule phosphatidylinositol 3,4,5-triphosphate. Traditionally, assays for phosphoinositide phosphatases such as SHIP2 have relied on radiolabeled phosphatidylinositol-containing lipid membranes and chromatographic separation of labeled phospholipid substrate from product by thin-layer chromatography. We have expressed and purified catalytically active phosphatase domain constructs of SHIP2 from Escherichia coli and developed a sensitive and antibody- or binding protein-independent assay for SHIP2 amenable to high-throughput screening of phosphoinositide phosphatases or phosphoinositide kinases. This microfluidic assay, with Z' values approximately 0.8, is based upon the difference in mobility within an electric field between a fluorophore-labeled phosphatidylinositol 3,4,5-triphosphate substrate and the corresponding 3,4-bisphosphate product. High-throughput screening of a 91,060-member compound library in 384-well format resulted in the identification of SHIP2 inhibitors.


Subject(s)
Microfluidic Analytical Techniques , Phosphoric Monoester Hydrolases/analysis , Chromatography, Thin Layer , Dimethyl Sulfoxide/chemistry , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Gene Expression Regulation, Enzymologic , PTEN Phosphohydrolase/analysis , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/analysis , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol Phosphates/analysis , Phosphatidylinositol Phosphates/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Phosphoric Monoester Hydrolases/genetics , Recombinant Proteins/analysis , Signal Transduction , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...