Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 8738, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253971

ABSTRACT

During their everyday service, the restorative dental materials are subjected to temperature changes which can be viewed as intensive in the context of the highest allowed temperatures for these materials. In this work, the effect of hydrothermal fatigue on the in vitro tribological performance, compression strength, microhardness, and surface roughness of glass-ionomer cements was studied. Samples of 3 commercially available cements were divided into the reference (aged 14 days) and thermocycled (20,000 cycles; 5-55 °C) groups. The results obtained show that functional properties of the specimens subjected to thermal fatigue significantly differ from the literature data on the cements aged at constant temperatures. The effect of hydrothermal fatigue on the functional properties of cements is discussed in the context of processes induced by exposure to variable temperatures.


Subject(s)
Glass Ionomer Cements , Hot Temperature , Compressive Strength , Temperature , Materials Testing , Surface Properties
2.
Discov Nano ; 18(1): 2, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36723754

ABSTRACT

The biological methods are considered as environmental-eco-friendly methods for the silver nanocomposites mediation and are widely used in this context. However, the biological methods go along with the relevant limitations, for instance simultaneous synthesis of silver chlorides (AgNCl) type during the AgNPs mediation process. Therefore, the present research is coming to summarize several aspects in this context. Firstly, to present the possible promotion of the sustainable development using bioactive source (e.g. milk) as a source of two different available and new lactobacillus strains (Lactobacillus curvatus and Lactobacillus fermentum). Secondly, to show the ability of the respective isolates to be involved in mediation of various biosilver nanocomposites ((Bio)NCs) synthesis. Moreover, at this stage, for the first time, two (Bio)NCs mediation methods, called "direct method" and "modified method", have been developed, thus three types (AgNPs, AgNCl and AgNP@AgNCl) of nanocomposites mediated by two different Lactobacillus isolates take place. The interdisciplinary approach included using several spectroscopic, microscopic, spectrometric and thermogravimetric methods demonstrated that all six synthesized nanoparticles (three AgNPs, AgNCl and AgNP@AgNCl types from each source) consist of complex structure including both metallic silver core as well as organic surface deposits. The spectrometric technique allowed to identification of the organics branching surface, naturally secreted by the used Lactobacillus isolates during the inoculation step, suggesting the presence of amino-acids sequences which are direct connected with the reduction of silver ion to metal silver, and subsequently with the formation of coated (Bio)NCs and nucleation process. Moreover, based on the obtained results, the mediation mechanism of each (Bio)NCs has been proposed, suggesting that the formation of AgNPs, AgNCl and AgNP@AgNCl types occurs in different manners with faster synthesis firstly of AgNCl, then of the AgNPs type. No differences between the (Bio)NCs synthesized by two different Lactobacillus isolates have been noticed indicating no discrepancies between metabolites secreted by the respective sources.

3.
Sci Rep ; 13(1): 587, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36631546

ABSTRACT

In this study, for the first time, the comparison of commercially available chemical ZnO NCs and bio-ZnO NCs produced extracellularly by two different probiotic isolates (Latilactobacillus curvatus MEVP1 [OM736187] and Limosilactobacillus fermentum MEVP2 [OM736188]) were performed. All types of ZnO formulations were characterized by comprehensive interdisciplinary approach including various instrumental techniques in order to obtain nanocomposites with suitable properties for further applications, i.e. biomedical. Based on the X- ray diffraction analysis results, all tested nanoparticles exhibited the wurtzite structure with an average crystalline size distribution of 21.1 nm (CHEM_ZnO NCs), 13.2 nm (1C_ZnO NCs) and 12.9 nm (4a_ZnO NCs). The microscopy approach with use of broad range of detectors (SE, BF, HAADF) revealed the core-shell structure of bio-ZnO NCs, compared to the chemical one. The nanoparticles core of 1C and 4a_ZnO NCs are coated by the specific organic deposit coming from the metabolites produced by two probiotic strains, L. fermentum and L. curvatus. Vibrational infrared spectroscopy, photoluminescence (PL) and mass spectrometry (LDI-TOF-MS) have been used to monitor the ZnO NCs surface chemistry and allowed for better description of bio-NCs organic coating composition (amino acids residues). The characterized ZnO formulations were then assessed for their photocatalytic properties against methylene blue (MB). Both types of bio-ZnO NCs exhibited good photocatalytic activity, however, the effect of CHEM_ZnO NCs was more potent than bio-ZnO NCs. Finally, the colloidal stability of the tested nanoparticles were investigated based on the zeta potential (ZP) and hydrodynamic diameter measurements in dependence of the nanocomposites concentration and investigation time. During the biosynthesis of nano-ZnO, the increment of pH from 5.7 to around 8 were observed which suggested possible contribution of zinc aquacomplexes and carboxyl-rich compounds resulted in conversion of zinc tetrahydroxy ion complex to ZnO NCs. Overall results in present study suggest that used accessible source such us probiotic strains, L. fermentum and L. curvatus, for extracellular bio-ZnO NCs synthesis are of high interest. What is important, no significant differences between organic deposit (e.g. metabolites) produced by tested strains were noticed-both of them allowed to form the nanoparticles with natural origin coating. In comparison to chemical ZnO NCs, those synthetized via microbiological route are promising material with further biological potential once have shown high stability during 7 days.


Subject(s)
Nanoparticles , Zinc Oxide , Zinc Oxide/chemistry , Nanoparticles/chemistry , Zinc , Spectroscopy, Fourier Transform Infrared , Crystallography, X-Ray
4.
J Mech Behav Biomed Mater ; 133: 105324, 2022 09.
Article in English | MEDLINE | ID: mdl-35738132

ABSTRACT

The effect of a natural filler (diatomaceous earth [DE], a promising drug-delivery agent) and its content was investigated on the performance of a model glass-ionomer cement (GIC). Three sample series, differing in DE content (0, 2.5 and 5 wt%), were prepared using a commercial GIC as a matrix (3M Ketac Molar Easymix). The resultant surface microhardness and roughness, wear performance, and compressive strength of the samples were measured after the samples had been stored in deionized water at 37°C for a fixed time. Moreover, the film thickness was tested for the freshly mixed samples. The numerical data was subjected to statistical analysis, in order to test the null hypotheses of the equality of the measured properties between the reference and the DE-modified samples. According to the results, diatomaceous earth particles are uniformly distributed in the GIC matrix, and the cavities of frustules tend to be filled with the GIC. This translates into the observed performance of the DE-loaded GIC. Compared with the reference material (0 wt% DE), the surface microhardness (2.5 wt% DE, p = 0.014; 5 wt% DE, p = 0.005) and roughness (e.g. Ra; 2.5 wt% DE, p = 0.003; 5 wt% DE, p < 0.001) are increased. No effect on the wear performance (p = 0.530 and 0.256, respectively) or compressive strength (p = 0.514) was noticed in the case of DE partially substituting the glass phase. Based on the study results, it is evidenced that diatom frustules are a suitable filler for application in conventional glass-ionomer cements as the glass-substituting drug-loaded carrier. Notably, however, the surface finish method of the DE-filled materials needs development.


Subject(s)
Diatomaceous Earth , Drug Carriers , Compressive Strength , Glass Ionomer Cements , Materials Testing
5.
Materials (Basel) ; 15(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35329457

ABSTRACT

Aluminium (Al) and titanium (Ti) coatings were applied on AZ91E magnesium alloy using a low-pressure warm spray (WS) method. The deposition was completed using three different nitrogen flow rates (NFR) for both coatings. NFR effects on coating microstructure and other physical properties were systematically studied. Microstructural characterization was performed using scanning electron microscopy (SEM), and the porosity was estimated using two methods-image analysis and X-ray microtomography. The coating adhesion strength, wear resistance, and hardness were examined. The protective properties of the coatings were verified via a salt spray test. Decreasing NFR during coating deposition produced more dense and compact coatings. However, these conditions increased the oxidation of the powder. Al coatings showed lower hardness and wear resistance than Ti coatings, although they are more suitable for corrosion protection due to their low porosity and high compactness.

6.
Materials (Basel) ; 13(20)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081398

ABSTRACT

New composites containing a natural filler made of diatom shells (frustules), permitting the modification of polylactide matrix, were produced by Fused Deposition Modelling (3D printing) and were thoroughly examined. Two mesh fractions of the filler were used, one of <40 µm and the other of 40-63 µm, in order to check the effect of the filler particle size on the composite properties. The composites obtained contained diatom shells in the concentrations from 0% to 5% wt. (0-27.5% vol.) and were subjected to rheological analysis. The composites obtained as filaments of 1.75 mm in diameter were used for 3D printing. The printed samples were characterized as to hydrophilic-hydrophobic, thermal and mechanical properties. The functional parameters of the printed objects, e.g., mechanical characteristics, stability on contact with water and water contact angle, were measured. The results revealed differences in the processing behavior of the samples as well as the effect of secondary granulation of the filler on the parameters of the printing and mechanical properties of the composites.

7.
Materials (Basel) ; 13(14)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708221

ABSTRACT

The effects of exposure to overheating (temperature above 1000 °C) on the degradation (modification) of layers of coatings (coatings based on aluminum) of uncooled polycrystalline rotor blades of aircraft turbine jet engines were investigated under laboratory conditions. In order to determine the nature of the changes as well as the structural changes in the various zones, a multi-factor analysis of the layers of the coating, including the observation of the surface of the blades, using, among others, electron microscopy, structural tests, surface morphology, and chemical composition testing, was carried out. As a result of the possibility of strengthening the physical foundations of the non-destructive testing of blades, the undertaken research mainly focused on the characteristics of the changes occurring in the outermost layers of the coatings. The obtained results indicate the structural degradation of the coatings, particularly the unfavorable changes, become visible after heating to 1050 °C. The main, strongly interacting, negative phenomena include pore formation, external diffusion of Fe and Cr to the surface, and the formation and subsequent thickening of Fe-Cr particles on the surface of the alumina layer.

8.
Nanomaterials (Basel) ; 10(5)2020 05 18.
Article in English | MEDLINE | ID: mdl-32443489

ABSTRACT

Diatom frustules, with their hierarchical three-dimensional patterned silica structures at nano to micrometer dimensions, can be a paragon for the design of lightweight structural materials. However, the mechanical properties of frustules, especially the species with pennate symmetry, have not been studied systematically. A novel approach combining in situ micro-indentation and high-resolution X-ray computed tomography (XCT)-based finite element analysis (FEA) at the identical sample is developed and applied to Didymosphenia geminata frustule. Furthermore, scanning electron microscopy and transmission electron microscopy investigations are conducted to obtain detailed information regarding the resolvable structures and the composition. During the in situ micro-indentation studies of Didymosphenia geminata frustule, a mainly elastic deformation behavior with displacement discontinuities/non-linearities is observed. To extract material properties from obtained load-displacement curves in the elastic region, elastic finite element method (FEM) simulations are conducted. Young's modulus is determined as 31.8 GPa. The method described in this paper allows understanding of the mechanical behavior of very complex structures.

9.
Chem Sci ; 9(33): 6774-6778, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30294417

ABSTRACT

Metastable states of soft matters are extensively used in designing stimuli-responsive materials. However, the non-steady properties may obstruct consistent performance. Here we report an approach to eradicate the indistinguishable metastable supercooled state of functional molecular liquids (FMLs), which remains as a liquid for weeks or months before crystallizing, via rational molecular design. The phases (solid, kinetically stable liquid, and supercooled liquid) of a model FML, branched alkyl chain-substituted 9,10-diphenylanthracene (DPA), are found to be governed by subtle alterations of the molecular structure (alkyl-DPA ratio and bulkiness of the DPA unit). We thus outline molecular design principles to avoid supercooled FML formation. Moreover, we demonstrate a practical technique to rapidly discriminate supercooled FMLs (within 5 h) by accelerating their crystallization in differential scanning calorimetry heating via pre-annealing or relatively slow scanning.

10.
Phys Chem Chem Phys ; 19(31): 21119-21126, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28749519

ABSTRACT

Intrinsically hydrophobic rare-earth oxides (REOs) have emerged as a robust class of ceramics for a variety of applications. Recently, the hydrophobicity of REOs has been observed experimentally and subsequently scrutinized using electronic structure density functional theory (DFT) calculations. In this work, we applied the DFT method to analyze the possibility of tuning the wettability of commonly used hydrophilic Al2O3 and TiO2 by surface doping with Ce. The calculations indicate that Ce can preferentially segregate to the surface of Al2O3 and TiO2 and form a Ce-rich oxide layer, which is stable under a wide range of oxygen chemical potentials. A remarkable increase in the water contact angle is predicted for Ce-doped Al2O3(0001), whereas the water contact angle calculated for Ce-doped TiO2(110) remains unchanged, regardless of the Ce concentration. The wetting properties of Ce-doped Al2O3 are governed by two factors: (1) the unique electronic structure of the rare-earth metal promotes hydrogen bond formation between H2O and surface oxygen; (2) significant relaxation of the surface Ce and O atoms hampers direct interaction between H2O and Al cations, preventing dissociative water adsorption. These results provide a valuable opportunity for Al2O3 surface modification, in terms of achieving hydrophobicity.

11.
J Biomed Mater Res B Appl Biomater ; 105(1): 222-229, 2017 01.
Article in English | MEDLINE | ID: mdl-26465349

ABSTRACT

Corrosion processes of metallic biomaterials in the oral cavity pose a significant limitation to the life and reliable functioning of dental materials. In this article, the influence of environment bacteria Desulfotomaculum nigrificans sulfate reducing bacteria on the corrosion processes of 316LV steel was assessed. After 14 and 28 days of contact of the material with the bacterial environment, the surfaces of the tested biomaterial were observed by means of confocal scanning laser microscopy, and their chemical composition was studied using X-Ray Photoelectron Spectrometry and a scanning transmission electron microscopy. Corrosive changes, the presence of sulfur (with atomic concentration of 0.5%) on the surface of the biomaterial and the presence of a thin oxide layer (thickness of ∼20 nm) under the surface of the steel were observed. This corrosion layer with significant size reduction of grains was characterized by an increased amount of oxygen (18% mas., p < 0.001) in comparison to untreated 316LV steel (where oxygen concentration - 10% mas.). Image analysis conducted using APHELION software indicated that corrosion pits took up ∼2.8% of the total tested surface. The greatest number of corrosion pits had a surface area within the range of 100-200 µm2 . © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 222-229, 2017.


Subject(s)
Biofilms/growth & development , Desulfotomaculum/physiology , Mouth/microbiology , Steel/chemistry , Corrosion , Humans
12.
J Microsc ; 265(1): 34-50, 2017 01.
Article in English | MEDLINE | ID: mdl-27571322

ABSTRACT

A sample of a nanomaterial contains a distribution of nanoparticles of various shapes and/or sizes. A scanning electron microscopy image of such a sample often captures only a fragment of the morphological variety present in the sample. In order to quantitatively analyse the sample using scanning electron microscope digital images, and, in particular, to derive numerical representations of the sample morphology, image content has to be assessed. In this work, we present a framework for extracting morphological information contained in scanning electron microscopy images using computer vision algorithms, and for converting them into numerical particle descriptors. We explore the concept of image representativeness and provide a set of protocols for selecting optimal scanning electron microscopy images as well as determining the smallest representative image set for each of the morphological features. We demonstrate the practical aspects of our methodology by investigating tricalcium phosphate, Ca3 (PO4 )2 , and calcium hydroxyphosphate, Ca5 (PO4 )3 (OH), both naturally occurring minerals with a wide range of biomedical applications.

13.
J Nanosci Nanotechnol ; 15(7): 4992-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26373066

ABSTRACT

The structure and corrosion resistance of Grade 2 titanium subjected to the hydroextrusion processes were examined. The microstructure was characterized using optical microscopy and transmission electron microscopy. The corrosion resistance was determined using the impedance and potentiodynamic methods, in 0.1 M H2SO4 solutions and an acidified 0.1 M NaCl solution with a pH of 4.2, at ambient temperature. Nanohardness tests were performed under a load of 100 mN. It has been demonstrated that the hydroextrusion method makes it possible to obtain relatively homogeneous nanocrystalline titanium Grade 2 with an increased hardness, the elastic modulus almost unchanged with respect to that of the initial structure and a lower corrosion resistance.

14.
J Nanosci Nanotechnol ; 13(5): 3246-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23858838

ABSTRACT

In the present study, the high pressure torsion (HPT) was used to refine the grain structure down to the nanometer scale in an austenitic stainless steel. The principles of HPT lay on torsional deformation under simultaneous high pressure of the specimen, which results in substantial reduction in the grain size. Disks of the 316LVM austenitic stainless steel of 10 mm in diameter were subjected to equivalent strains epsilon of 32 at RT and 450 degrees C under the pressure of 4 GPa. Furthermore, two-stage HPT processes, i.e., deformation at room temperature followed by deformation at 450 degrees C, were performed. The resulting microstructures were investigated in TEM observations. The mechanical properties were measured in terms of the microhardness and in tensile tests. HPT performed at two-stage conditions (firstly at RT next at 450 degrees C) gives similar values of microhardness to the ones obtained after deforming only at 450 degrees C but performed to higher values of the overall equivalent strain epsilon. The effect of high pressure torsion on structural refinement and mechanical properties of an austenitic stainless steel was evaluated.


Subject(s)
Crystallization/methods , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Nanotechnology/methods , Stainless Steel/chemistry , Hardness , Materials Testing , Particle Size , Pressure , Surface Properties , Temperature , Tensile Strength , Torque
15.
Int J Nanomedicine ; 8: 653-68, 2013.
Article in English | MEDLINE | ID: mdl-23431124

ABSTRACT

A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp) nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM). The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m(2)/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 µmol/dm(3) in the tris(hydroxymethyl)aminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material extract, and in direct contact. A quantitative analysis was based on the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide. Viability assay as well as on DNA content measurements in the PicoGreen test. Indirect observations were performed at one point in time according to the ISO standard for in vitro cytotoxicity (ie, after 24 hours of cell exposure to the extracts). The direct contact tests were completed at three time points: after 24 hours, on day 7, and on day 14 of a culture in an osteogenic medium. All of the tests revealed good tolerance of cells toward the material; this was also shown by means of live/dead fluorescent staining. Both quantitative results and morphological observations revealed much better cell tolerance toward the obtained HAp compared to commercially available HAp NanoXIM, which was used as a reference material.


Subject(s)
Bone Substitutes/chemistry , Durapatite/chemistry , Microwaves , Nanoparticles/chemistry , Animals , Bone Substitutes/chemical synthesis , Bone Substitutes/pharmacology , Cell Shape/drug effects , Cell Survival/drug effects , Cells, Cultured , Durapatite/chemical synthesis , Durapatite/pharmacology , Humans , Materials Testing , Osteoblasts/cytology , Osteoblasts/drug effects , Swine , Thermogravimetry
16.
J Mater Sci ; 46(16): 5454-5459, 2011.
Article in English | MEDLINE | ID: mdl-34341615

ABSTRACT

Properties of engineering metallic alloys (e.g., fracture toughness, corrosion resistance) are often limited by the presence of primary intermetallic particles which form during conventional solidification. Rapid solidification brings about much more homogenous amorphous and/or nanocrystalline structure with reduced density of primary particles. Rapidly solidified thin ribbons obtained by melt spinning are usually considered as intrinsically homogenous. However, due to different cooling conditions at the wheel surface and on the side exposed to the ambient environment, structure of such ribbons may vary significantly across its thickness. The materials studied in this study were 30-40 µm thickness ribbons of nanocrystalline hyper- and hypo-eutectic Al-Si-Zr alloys produced by melt-spinning method. Transmission electron microscopy and high resolution scanning transmission electron microscopy were used to characterize the structure homogeneity across the ribbons. Thin foils for transmission observations were prepared by focused ion beam system. Microstructural observations confirmed nanocrystalline character of Al-Si-Zr alloys. However, these observations revealed inhomogeneity of the structure across the ribbon width.

SELECTION OF CITATIONS
SEARCH DETAIL
...