Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Turk J Med Sci ; 53(5): 1465-1475, 2023.
Article in English | MEDLINE | ID: mdl-38812995

ABSTRACT

Background/aim: There are reports stating that deteriorations in metal homeostasis in neurodegenerative diseases promote abnormal protein accumulation. In this study, the serum metal levels in Alzheimer's disease (AD) and Parkinson's disease (PD) and its relationship with the cortical regions of the brain were investigated. Materials and methods: The patients were divided into 3 groups consisting of the AD group, PD group, and healthy control group (n = 15 for each). The volumes of specific brain regions were measured over the participants' 3-dimensional magnetic resonance images, and they were compared across the groups. Copper, zinc, iron, and ferritin levels in the serums were determined, and their correlations with the brain region volumes were examined. Results: The volumes of left hippocampus and right substantia nigra were lower in the AD and PD groups, while the volume of the left nucleus caudatus (CdN) and bilateral insula were lower in the AD group compared to the control group. Serum zinc levels were lower in the AD and PD groups, while the iron level was lower in the PD group in comparison to the control group. In addition, the serum ferritin level was higher in the AD group than in the control group. Serum zinc and copper levels in the AD group were positively correlated with the volumes of the right entorhinal cortex, thalamus, CdN, and insula. Serum zinc and copper levels in the PD group showed a negative correlation with the left nucleus accumbens (NAc), right putamen, and right insula volumes. While the serum ferritin level in the PD group displayed a positive correlation with the bilateral CdN, putamen, and NAc, as well as the right hippocampus and insula volumes, no area was detected that showed a correlation with the serum ferritin level in the AD group. Conclusion: A relationship was determined between the serum metal levels in the AD and PD groups and certain brain cortical regions that showed volumetric changes, which can be important for the early diagnosis of neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Brain , Ferritins , Iron , Magnetic Resonance Imaging , Parkinson Disease , Zinc , Humans , Male , Female , Aged , Alzheimer Disease/blood , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Zinc/blood , Iron/blood , Iron/metabolism , Parkinson Disease/blood , Parkinson Disease/diagnostic imaging , Middle Aged , Ferritins/blood , Brain/diagnostic imaging , Brain/pathology , Copper/blood , Neurodegenerative Diseases/blood , Neurodegenerative Diseases/diagnostic imaging , Case-Control Studies , Metals/blood
2.
J Clin Neurosci ; 100: 52-58, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35398594

ABSTRACT

The purpose of this study is to determine the volumes of primary brain regions associated with smell and taste in Alzheimer's and Parkinson's patients and healthy controls using MR imaging and examine volumetric changes in comparison to smell/taste questionnaire and test results and endocannabinoid (EC) levels. The study included 15 AD patients with mild cognitive dysfunction scored as 18 ≤ MMSE ≤ 23, 15 PD patients with scores of 18 < MoCA < 26 and 18 ≤ MMSE ≤ 23, and 15 healthy controls. A taste and smell questionnaire was given to the participants, and their taste and smell statuses were examined using the Sniffin' Sticks smell identification test and Burghart Taste Strips. EC levels were analyzed in the blood serum samples of the participants using the ELISA method. The volumes of the left olfactory bulb (p = 0.001), left amygdala (p = 0.004), left hippocampus (p = 0.008), and bilateral insula (left p = 0.000, right p = 0.000) were significantly smaller in the Alzheimer's patients than the healthy controls. The volumes of the left olfactory bulb (p = 0.001) and left hippocampus (p = 0.009) were significantly smaller in the Parkinson's patients than the healthy controls. A significant correlation was determined between volume reduction in the left Rolandic operculum cortical region and taste dysfunction. EC levels were significantly higher in both AD (p = 0.000) and PD (p = 0.006) in comparison to the controls. Our results showed that volumetric changes occur in the brain regions associated with smell and taste in Alzheimer's and Parkinson's patients. It was observed that ECs played a role in these volumetric changes and the olfactory and taste dysfunctions of the patients.


Subject(s)
Alzheimer Disease , Olfaction Disorders , Parkinson Disease , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Endocannabinoids , Humans , Olfaction Disorders/complications , Olfaction Disorders/etiology , Olfactory Bulb/diagnostic imaging , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Smell , Taste , Taste Disorders/complications , Taste Disorders/etiology
3.
Int J Neurosci ; 131(8): 725-734, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33064056

ABSTRACT

AIM: The aim of this study was to make a volumetric comparison of some medial temporal lobe structures and neuropeptides between the patients of Alzheimer's disease (AD) and healthy individuals. METHOD: The study comprised of a group of patients diagnosed with mild AD (n:15) and a Control group (n:15) (16 females, 14 males, mean age:72.90 ± 4.50). Voxel-based morphometry and MRICloud analyses were performed on the MR images taken in 3D measurements of gray matter volumes of all subjects. Following a 10-minute hug test, blood samples were taken from all participants for oxytocin (OT) and arginine vasopressin (AVP) analyses. RESULTS: The patient group had a statistically lower right hippocampus volume (p = 0.004) and OT values (p = 0.028) than the Control group. OT signal values increased with a volume increase in the right parahippocampal gyrus (PHG_R), and OT conc. and AVP conc. values increased with increasing volume of the PHG_R. CONCLUSION: It is suggested that the right hippocampus, right fusiform gyrus, left amygdala, left parahippocampal gyrus, and left entorhinal cortex atrophies can be used as predictors in the early diagnosis of AD. The positive correlation between PHG_R and neuropeptides showed the need to investigate the PHG and OT function more deeply.


Subject(s)
Alzheimer Disease/blood , Alzheimer Disease/pathology , Neuropeptides/blood , Temporal Lobe/pathology , Aged , Alzheimer Disease/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Temporal Lobe/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...