Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
Bioorg Med Chem Lett ; 29(4): 654-658, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30598349

ABSTRACT

The kisspeptin (Kp, Kp-54, metastin)/KISS1R system plays crucial roles in regulating the secretion of gonadotropin-releasing hormone. Continuous administration of nonapeptide Kp analogs caused plasma testosterone depletion, whereas bolus administration caused strong plasma testosterone elevation in male rats. To develop a new class of small peptide drugs, we focused on stepwise N-terminal truncation of Kp analogs and discovered potent pentapeptide analogs. Benzoyl-Phe-azaGly-Leu-Arg(Me)-Trp-NH2 (16) exhibited high agonist activity for KISS1R and excellent metabolic stability in rat serum. A single injection of a 4-pyridyl analog (19) at the N-terminus of 16 into male Sprague Dawley rats caused a robust increase in plasma luteinizing hormone levels, but unlike continuous administration of nonapeptide Kp analogs, continuous administration of 19 maintained moderate testosterone levels in rats. These results indicated that small peptide drugs can be successfully developed for treating sex hormone deficiency.


Subject(s)
Gonads/drug effects , Hypothalamus/drug effects , Kisspeptins/agonists , Pituitary Gland/drug effects , Animals , Gonadotropin-Releasing Hormone/metabolism , Male , Rats , Rats, Sprague-Dawley
2.
Eur J Pharmacol ; 822: 138-146, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29355559

ABSTRACT

TAK-448 and TAK-683 are kisspeptin agonist analogs with improved in vivo stability and activity. Previous studies showed that continuous subcutaneous administration of TAK-448 or TAK-683 caused rapid and profound reductions in plasma testosterone levels in various species, including male healthy volunteers, suggesting their therapeutic potential as anti-prostate cancer agents. For clinical drug development, one-month sustained-release depots of TAK-448 and TAK-683, TAK-448-SR(1M) and TAK-683-SR(1M), were designed to improve usability in clinical practice. In this study, the pharmacokinetics/pharmacodynamics (PK/PD) profiles of TAK-448-SR(1M) and TAK-683-SR(1M) were initially tested in male rats to ensure their eligibility as one-month depots. The therapeutic advantages of TAK-448-SR(1M) and TAK-683-SR(1M) over TAP-144-SR(1M) were then investigated in a JDCaP xenograft rat model. TAK-448-SR(1M) and TAK-683-SR(1M) maintained certain levels of plasma TAK-448 free form (TAK-448F) and plasma TAK-683 free form (TAK-683F) for at least 4 weeks, before clearance from the circulation. Accompanying their desirable PK profiles, TAK-448-SR(1M) and TAK-683-SR(1M) showed favorable PD responses as one-month depots and demonstrated better testosterone control than TAP-144-SR(1M). Both depots exerted rapid and profound suppression of plasma testosterone levels in male rats. These profound suppressive effects were maintained in dose-dependent manners, before recovery toward normal levels. In the JDCaP xenograft model, TAK-448-SR(1M) and TAK-683-SR(1M) both showed better prostate-specific antigen (PSA) control than TAP-144-SR(1M), although all treatment groups eventually experienced PSA recurrence and tumor regrowth. In conclusion, this study demonstrates that both TAK-448-SR(1M) and TAK-683-SR(1M) have desirable and better PK/PD profiles than TAP-144-SR(1M) in rats, which could potentially provide better clinical outcomes in androgen-dependent prostate cancer.


Subject(s)
Androgens/metabolism , Kisspeptins/pharmacology , Kisspeptins/pharmacokinetics , Prostatic Neoplasms/drug therapy , Animals , Disease Models, Animal , Kisspeptins/therapeutic use , Male , Prostatic Neoplasms/metabolism , Rats , Rats, Sprague-Dawley , Xenograft Model Antitumor Assays
3.
J Med Chem ; 59(19): 8804-8811, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27589480

ABSTRACT

Metastin/kisspeptin is an endogenous ligand of KISS1 Receptor (KISS1R). Metastin and KISS1R are suggested to play crucial roles in regulating the secretion of gonadotropin-releasing hormone (GnRH), and continuous administration of metastin derivatives attenuated the plasma testosterone levels in male rats. Our optimization studies of metastin derivatives led to the discovery of 1 (Ac-d-Tyr-d-Trp-Asn-Thr-Phe-azaGly-Leu-Arg(Me)-Trp-NH2, TAK-683), which suppressed plasma testosterone in rats at lower doses than those of leuprolide. Although 1 possessed extremely potent pharmacological activity, 20 mg/mL aqueous solution of 1 has a gel formation property. In order to improve this physicochemical property, we substituted d-Trp at position 47 with a variety of amino acids; we identified that substitution with cyclic amino acids, which could change peptide conformation, retained its potency. Especially, analogue 24 (TAK-448) with trans-4-hydroxyproline (Hyp) at position 47 showed not only superior pharmacological activity to 1 but also excellent water solubility. Furthermore, 20 mg/mL aqueous solution of 24 did not show gel formation up to 5 days.


Subject(s)
Kisspeptins/chemistry , Kisspeptins/pharmacology , Receptors, G-Protein-Coupled/agonists , Testosterone/antagonists & inhibitors , Animals , CHO Cells , Cricetulus , Humans , Kisspeptins/administration & dosage , Kisspeptins/blood , Male , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/metabolism , Receptors, Kisspeptin-1 , Solubility , Testosterone/blood , Testosterone/metabolism
4.
Prostate ; 76(16): 1536-1545, 2016 12.
Article in English | MEDLINE | ID: mdl-27473672

ABSTRACT

BACKGROUND: Castration resistance creates a significant problem in the treatment of prostate cancer. Constitutively active splice variants of androgen receptor (AR) have emerged as drivers for resistance to androgen deprivation therapy, including the next-generation androgen-AR axis inhibitors abiraterone and enzalutamide. In this study, we describe the characteristics of a novel castration-resistant prostate cancer (CRPC) model, designated JDCaP-hr (hormone refractory). METHODS: JDCaP-hr was established from an androgen-dependent JDCaP xenograft model after surgical castration. The expression of AR and its splice variants in JDCaP-hr was evaluated by immunoblotting and quantitative reverse transcription-polymerase chain reaction. The effects of AR antagonists and testosterone on JDCaP-hr were evaluated in vivo and in vitro. The roles of full-length AR (AR-FL) and AR-V7 in JDCaP-hr cell growth were evaluated using RNA interference. RESULTS: JDCaP-hr acquired a C-terminally truncated AR protein during progression from the parental JDCaP. The expression of AR-FL and AR-V7 mRNA was upregulated by 10-fold in JDCaP-hr compared with that in JDCaP, indicating that the JDCaP and JDCaP-hr models simulate castration resistance with some clinical features, such as overexpression of AR and its splice variants. The AR antagonist bicalutamide did not affect JDCaP-hr xenograft growth, and importantly, testosterone induced tumor regression. In vitro analysis demonstrated that androgen-independent prostate-specific antigen secretion and cell proliferation of JDCaP-hr were predominantly mediated by AR-V7. JDCaP-hr cell growth displayed a bell-shaped dependence on testosterone, and it was suppressed by physiological concentrations of testosterone. Testosterone induced rapid downregulation of both AR-FL and AR-V7 expression at physiological concentrations and suppressed expression of the AR target gene KLK3. CONCLUSIONS: Our findings support the clinical value of testosterone therapy, including bipolar androgen therapy, in the treatment of AR-overexpressed CRPC driven by AR splice variants that are not clinically actionable at present. Prostate 76:1536-1545, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , RNA Splicing/genetics , Receptors, Androgen/genetics , Testosterone/pharmacology , Androgen Receptor Antagonists/pharmacology , Animals , Cell Proliferation/drug effects , Disease Models, Animal , Down-Regulation/drug effects , Genetic Variation , Heterografts , Humans , Male , Mice , Mice, Nude , Neoplasm Transplantation , Orchiectomy , Prostate-Specific Antigen/metabolism , RNA, Messenger/analysis , Receptors, Androgen/physiology , Xenograft Model Antitumor Assays
5.
Eur J Pharmacol ; 765: 322-31, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26335395

ABSTRACT

Selective androgen receptor modulators (SARMs) specifically bind to the androgen receptor and exert agonistic or antagonistic effects on target organs. In this study, we investigated the SARM activity of TSAA-291, previously known as a steroidal antiandrogen, in mice because TSAA-291 was found to possess partial androgen receptor agonist activity in reporter assays. In addition, to clarify the mechanism underlying its tissue selectivity, we performed comprehensive cofactor recruitment analysis of androgen receptor using TSAA-291 and dihydrotestosterone (DHT), an endogenous androgen. The androgen receptor agonistic activity of TSAA-291 was more obvious in reporter assays using skeletal muscle cells than in those using prostate cells. In castrated mice, TSAA-291 increased the weight of the levator ani muscle without increasing the weight of the prostate and seminal vesicle. Comprehensive cofactor recruitment analysis via mammalian two-hybrid methods revealed that among a total of 112 cofactors, 12 cofactors including the protein inhibitor of activated STAT 1 (PIAS1) were differently recruited to androgen receptor in the presence of TSAA-291 and DHT. Prostate displayed higher PIAS1 expression than skeletal muscle. Forced expression of the PIAS1 augmented the transcriptional activity of the androgen receptor, and silencing of PIAS1 by siRNAs suppressed the secretion of prostate-specific antigen, an androgen responsive marker. Our results demonstrate that TSAA-291 has SARM activity and suggest that TSAA-291 may induce different conformational changes of the androgen receptor and recruitment profiles of cofactors such as PIAS1, compared with DHT, to exert tissue-specific activity.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Androgens/pharmacology , Nandrolone/analogs & derivatives , Protein Inhibitors of Activated STAT/metabolism , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/blood , Androgens/blood , Animals , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , HEK293 Cells , Humans , Male , Mice, Inbred ICR , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Nandrolone/blood , Nandrolone/pharmacology , Orchiectomy , Prostate/drug effects , Prostate/metabolism , Protein Binding , Receptors, Androgen/genetics , Seminal Vesicles/drug effects , Seminal Vesicles/metabolism , Transfection , Two-Hybrid System Techniques
6.
Bioorg Med Chem ; 23(10): 2568-78, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25862209

ABSTRACT

To develop effective drugs for hypogonadism, sarcopenia, and cachexia, we designed, synthesized, and evaluated selective androgen receptor modulators (SARMs) that exhibit not only anabolic effects on organs such as muscles and the central nervous system (CNS) but also neutral or antagonistic effects on the prostate. Based on the information obtained from a docking model with androgen receptor (AR), we modified a hit compound A identified through high-throughput screening. Among the prepared compounds, 1-(4-cyano-1-naphthyl)-2,3-disubstituted pyrrolidine derivatives 17h, 17m, and 17j had highly potent AR agonistic activities in vitro and good tissue selectivity in vivo. These derivatives increased the weight of the levator ani muscle without influencing the prostate and seminal vesicle. In addition, these compounds induced sexual behavior in castrated rats, indicating that the compounds could also act as agonists on the CNS.


Subject(s)
Anabolic Agents/chemical synthesis , Androgens/chemical synthesis , Naphthols/chemical synthesis , Pyrrolidines/chemical synthesis , Receptors, Androgen/metabolism , Anabolic Agents/pharmacology , Androgens/pharmacology , Animals , Castration , Central Nervous System/drug effects , Central Nervous System/metabolism , Gene Expression , Humans , Male , Molecular Docking Simulation , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Naphthols/pharmacology , Prostate/drug effects , Prostate/metabolism , Protein Binding , Pyrrolidines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Androgen/genetics , Sexual Behavior, Animal/drug effects , Structure-Activity Relationship , Testosterone/pharmacology
7.
Neuroendocrinology ; 100(2-3): 250-64, 2014.
Article in English | MEDLINE | ID: mdl-25428554

ABSTRACT

The continuous activation of the kisspeptin receptor by its agonists causes the abrogation of kisspeptin signaling, leading to decreased pulsatile luteinizing hormone (LH) secretion. Employing this phenomenon as a tool for probing kisspeptin action, this study aimed to clarify the role of kisspeptin in gonadotropin-releasing hormone (GnRH) pulse generation in goats. We examined the effects of chronic administration of TAK-683, an investigational kisspeptin analog, on LH secretion, GnRH immunostaining, pituitary responses to exogenous GnRH, and GnRH pulse generator activity, reflected by a characteristic increase in multiple-unit activity (MUA volley). An osmotic pump containing TAK-683 was subcutaneously implanted on day 0. TAK-683 treatment dose-dependently suppressed pulsatile LH secretion on day 1. Higher doses of chronic TAK-683 profoundly suppressed pulsatile LH secretion but had little effect on GnRH immunostaining patterns and pituitary responses to GnRH on day 5. In ovariectomized goats, MUA volleys occurred at approximately every 30 min on day -1. On day 5 of chronic TAK-683 administration, pulsatile LH secretion was markedly suppressed, whereas MUA volleys were similar to those observed on day -1. Male pheromones and senktide (neurokinin B receptor agonist) induced an MUA volley but had no effect on LH secretion during chronic TAK-683 administration. The results indicate that the chronic administration of a kisspeptin analog profoundly suppresses pulsatile LH secretion without affecting GnRH content, pituitary function or GnRH pulse generator activity, and they suggest an indispensable role for kisspeptin signaling in the cascade driving GnRH/LH pulses by the GnRH pulse generator.


Subject(s)
Biological Clocks/drug effects , Central Nervous System Agents/administration & dosage , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/drug effects , Kisspeptins/administration & dosage , Animals , Biological Clocks/physiology , Dose-Response Relationship, Drug , Female , Goats , Hypodermoclysis , Hypothalamus/physiology , Infusion Pumps, Implantable , Luteinizing Hormone/metabolism , Male , Peptide Fragments/pharmacology , Pituitary Gland/drug effects , Pituitary Gland/physiology , Receptors, Neurokinin-3/agonists , Receptors, Neurokinin-3/metabolism , Substance P/analogs & derivatives , Substance P/pharmacology , Testosterone/pharmacology
8.
J Med Chem ; 57(14): 6105-15, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-24918545

ABSTRACT

Modifications of metastin(45-54) produced peptide analogues with higher metabolic stability than metastin(45-54). N-terminally truncated nonapeptide 4 ([D-Tyr46,D-Pya(4)47,azaGly51,Arg(Me)53]metastin(46-54)) is a representative compound with both potent agonistic activity and metabolic stability. Although 4 had more potent testosterone-suppressant activity than metastin, it possessed physicochemical instability at pH 7 and insufficient in vivo activity. Instability at pH 7 was dependent upon Asn48 and Ser49; substitution of Ser49 with Thr49 reduced this instability and maintained KISS1 receptor agonistic activity. Furthermore, [D-Tyr46,D-Trp47,Thr49,azaGly51,Arg(Me)53,Trp54]metastin(46-54) (14) showed 2-fold greater [Ca2+]i-mobilizing activity than metastin(45-54) and an apparent increase in physicochemical stability. N-terminal acetylation of 14 resulted in the most potent analogue, 22 (Ac-[D-Tyr46,D-Trp47,Thr49,azaGly51,Arg(Me)53,Trp54]metastin(46-54)). With continuous administration, 22 possessed 10-50-fold more potent testosterone-suppressive activity in rats than 4. These results suggested that a controlled release of short-length KISS1 receptor agonists can suppress the hypothalamic-pituitary-gonadal axis and reduce testosterone levels. Compound 22 was selected for further preclinical evaluation for hormone-dependent diseases.


Subject(s)
Kisspeptins/pharmacology , Oligopeptides/pharmacology , Receptors, G-Protein-Coupled/agonists , Testosterone/antagonists & inhibitors , Animals , CHO Cells , Chemistry, Physical , Cricetulus , Dose-Response Relationship, Drug , Humans , Kisspeptins/administration & dosage , Kisspeptins/chemistry , Male , Molecular Conformation , Oligopeptides/administration & dosage , Oligopeptides/chemistry , Rats , Rats, Sprague-Dawley , Receptors, Kisspeptin-1 , Structure-Activity Relationship , Testosterone/metabolism
9.
Eur J Pharmacol ; 735: 77-85, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24747751

ABSTRACT

Kisspeptin/metastin, a hypothalamic peptide, plays a pivotal role in controlling gonadotropin-releasing hormone (GnRH) neurons, and we have shown that continuous subcutaneous administration of kisspeptin analogues suppresses plasma testosterone in male rats. This study examined pharmacologic profiles of investigational kisspeptin analogues, TAK-448 and TAK-683, in male rats. Both analogues showed high receptor-binding affinity and potent and full agonistic activity for rat KISS1R, which were comparable to natural peptide Kp-10. A daily subcutaneous injection of TAK-448 and TAK-683 (0.008-8µmol/kg) for consecutive 7 days initially induced an increase in plasma luteinizing hormone and testosterone levels; however, after day 7, plasma hormone levels and genital organ weights were reduced. Continuous subcutaneous administrations of TAK-448 (≥10pmol/h, ca. 0.7nmol/kg/day) and TAK-683 (≥30pmol/h, ca. 2.1nmol/kg/day) induced a transient increase in plasma testosterone, followed by abrupt reduction of plasma testosterone to castrate levels within 3-7 days. This profound testosterone-lowering effect was sustained throughout 4-week dosing periods. At those dose levels, the weights of the prostate and seminal vesicles were reduced to castrate levels. These suppressive effects of kisspeptin analogues were more rapid and profound than those induced by the GnRH agonist analogue leuprolide treatment. In addition, TAK-683 reduced plasma prostate specific antigen (PSA) in the JDCaP androgen-dependent prostate cancer rat model. Thus, chronic administration of kisspeptin analogues may hold promise as a novel therapeutic approach for suppressing reproductive functions and hormone-related diseases such as prostate cancer. Further studies are warranted to elucidate clinical significance of TAK-448 and TAK-683.


Subject(s)
Antineoplastic Agents/pharmacology , Kisspeptins/pharmacology , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , CHO Cells , Calcium/metabolism , Cricetulus , Kisspeptins/blood , Kisspeptins/pharmacokinetics , Kisspeptins/therapeutic use , Leuprolide/pharmacology , Leuprolide/therapeutic use , Luteinizing Hormone/blood , Male , Organ Size/drug effects , Prostate/drug effects , Prostate/growth & development , Prostatic Neoplasms/drug therapy , Rats, Inbred F344 , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Receptors, Kisspeptin-1 , Seminal Vesicles/drug effects , Seminal Vesicles/growth & development , Testis/drug effects , Testis/growth & development , Testosterone/blood
10.
Eur J Pharmacol ; 723: 167-74, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24333551

ABSTRACT

TAK-385 (relugolix) is a novel, non-peptide, orally active gonadotropin-releasing hormone (GnRH) antagonist, which builds on previous work with non-peptide GnRH antagonist TAK-013. TAK-385 possesses higher affinity and more potent antagonistic activity for human and monkey GnRH receptors compared with TAK-013. Both TAK-385 and TAK-013 have low affinity for the rat GnRH receptor, making them difficult to evaluate in rodent models. Here we report the human GnRH receptor knock-in mouse as a humanized model to investigate pharmacological properties of these compounds on gonadal function. Twice-daily oral administration of TAK-013 (10mg/kg) for 4 weeks decreased the weights of testes and ventral prostate in male knock-in mice but not in male wild-type mice, demonstrating the validity of this model to evaluate antagonists for the human GnRH receptor. The same dose of TAK-385 also reduced the prostate weight to castrate levels in male knock-in mice. In female knock-in mice, twice-daily oral administration of TAK-385 (100mg/kg) induced constant diestrous phases within the first week, decreased the uterus weight to ovariectomized levels and downregulated GnRH receptor mRNA in the pituitary after 4 weeks. Gonadal function of TAK-385-treated knock-in mice began to recover after 5 days and almost completely recovered within 14 days after drug withdrawal in both sexes. Our findings demonstrate that TAK-385 acts as an antagonist for human GnRH receptor in vivo and daily oral administration potently, continuously and reversibly suppresses the hypothalamic-pituitary-gonadal axis. TAK-385 may provide useful therapeutic interventions in hormone-dependent diseases including endometriosis, uterine fibroids and prostate cancer.


Subject(s)
Drugs, Investigational/pharmacology , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Gonads/drug effects , Hypothalamo-Hypophyseal System/drug effects , Phenylurea Compounds/pharmacology , Pyrimidinones/pharmacology , Receptors, LHRH/antagonists & inhibitors , Administration, Oral , Animals , Female , Gonads/pathology , Humans , Hypothalamo-Hypophyseal System/metabolism , Male , Mice , Mice, Transgenic , Organ Size/drug effects , RNA, Messenger/metabolism , Receptors, LHRH/genetics , Testosterone/blood
11.
J Reprod Dev ; 59(6): 563-8, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24047956

ABSTRACT

The aim of the present study was to determine if the estradiol-induced luteinizing hormone (LH) surge is influenced by the constant exposure to TAK-683, an investigational metastin/kisspeptin analog, that had been established to depress the pulsatile gonadotropin-releasing hormone (GnRH) and LH secretion in goats. Ovariectomized goats subcutaneously received TAK-683 (TAK-683 group, n=6) or vehicle (control group, n=6) constantly via subcutaneous implantation of an osmotic pump. Five days after the start of the treatment, estradiol was infused intravenously in both groups to evaluate the effects on the LH surge. Blood samples were collected at 6-min intervals for 4 h prior to the initiation of either the TAK-683 treatment or the estradiol infusion, to determine the profiles of pulsatile LH secretion. They were also collected at 2-h intervals from -4 h to 32 h after the start of estradiol infusion for analysis of LH surges. The frequency and mean concentrations of LH pulses in the TAK-683 group were remarkably suppressed 5 days after the start of TAK-683 treatment compared with those of the control group (P<0.05). On the other hand, a clear LH surge was observed in all animals of both groups. There were no significant differences in the LH concentrations for surge peak and the peak time of the LH surge between the TAK-683 and control groups. These findings suggest that the effects of continuous exposure to kisspeptin or its analog on the mechanism(s) that regulates the pulsatile and surge mode secretion of GnRH/LH are different in goats.


Subject(s)
Drugs, Investigational/administration & dosage , Hypothalamus/drug effects , Kisspeptins/administration & dosage , Luteinizing Hormone/metabolism , Neurons/drug effects , Receptors, G-Protein-Coupled/agonists , Secretory Pathway/drug effects , Animals , Animals, Inbred Strains , Anterior Hypothalamic Nucleus/drug effects , Anterior Hypothalamic Nucleus/metabolism , Drug Implants , Drugs, Investigational/pharmacology , Estradiol/blood , Estradiol/pharmacokinetics , Estradiol/pharmacology , Female , Goats , Hypothalamus/metabolism , Infusions, Subcutaneous , Japan , Jugular Veins , Kisspeptins/pharmacology , Luteinizing Hormone/blood , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Ovariectomy , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Preoptic Area/drug effects , Preoptic Area/metabolism , Receptors, G-Protein-Coupled/metabolism , Secretory Rate/drug effects
12.
J Steroid Biochem Mol Biol ; 138: 298-306, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23856460

ABSTRACT

Orteronel (TAK-700) is an investigational, non-steroidal inhibitor of CYP17A1 with preferential inhibition of 17,20-lyase in NCI-H295 cells. Estrogen is synthesized from androgen by aromatase activity, and the effect of orteronel on estrogen synthesis was therefore evaluated. First, it was confirmed that orteronel does not directly inhibit aromatase activity. Second, the specific decline of serum estradiol and androgen levels in hypophysectomized female rats by orteronel in comparison with aromatase inhibitor anastrozole was evaluated; orteronel at doses ≥3mg/kg significantly suppressed serum estradiol, testosterone, androstenedione and 17-hydroxyprogesterone levels, and increased progesterone levels in the estrogen-synthesis pathway. Orteronel, at a dose of 300mg/kg, suppressed serum estradiol concentrations to a similar degree as 0.1mg/kg anastrozole. In contrast, in the corticoid-synthesis pathway, serum aldosterone, corticosterone, and progesterone levels did not change significantly following administration of 300mg/kg of orteronel. Third, the effect of multiple oral administration of orteronel on serum estradiol levels in regularly cycling female cynomolgus monkeys was evaluated. Orteronel at 15mg/kg/day (7.5mg/kg/treatment, twice daily [bid]) continued to suppress the estradiol surge prior to the start of luteal phase for 1.5-times the average duration of three consecutive, pre-treatment menstrual cycles, while serum progesterone was maintained at levels almost equal to those in the luteal phase although a certain portion of this increased level of progesterone could be of adrenal-origin. This suppressive effect on estradiol surge was thought to be reversible since serum estradiol levels started to rise immediately after the discontinuation of orteronel. Estradiol surge was not abrogated by treatment with anastrozole 0.2mg/kg/day (0.1mg/kg/treatment, bid). In summary, orteronel can suppress serum estradiol concentrations in hypophysectomized female rats and monkeys through selective inhibition of CYP17A1 activity, suggesting that orteronel might be effective for hormone-dependent breast cancers and estrogen-dependent diseases.


Subject(s)
Estradiol/biosynthesis , Estrogens/biosynthesis , Imidazoles/pharmacology , Naphthalenes/pharmacology , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Animals , Female , Macaca fascicularis , Rats , Signal Transduction/drug effects
13.
J Steroid Biochem Mol Biol ; 134: 80-91, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23146910

ABSTRACT

Endogenous androgens play a role in the development and progression of prostate cancer (PC), thus androgen suppression may offer an effective therapeutic strategy for this disease. Orteronel (TAK-700), 6-[(7S)-7-hydroxy-6,7-dihydro-5H-pyrrolo[1,2-c]imidazol-7-yl]-N-methyl-2-naphthamide, is a novel, non-steroidal, selective inhibitor of the 17,20-lyase activity of CYP17A--a key enzyme in the production of steroidal hormones--and is being developed as a therapy for PC. The purpose of this study was to elucidate the inhibitory activity of orteronel, in particular its specificity for androgen synthesis enzymes, in male rats--an androgen-synthesis model that largely reflects this pathway in humans. Orteronel inhibited 17,20-lyase activity in rats with an IC(50) of 1200 nM but did not inhibit 17α-hydroxylase or 11ß-hydroxylase (CYP11B1) activity in rats at concentrations up to 10 µM. In cellular steroidogenesis assays using rat testicular cells, orteronel suppressed testosterone and androstenedione production with an IC(50) of 640 nM and 210 nM, respectively, but did not suppress either corticosterone or aldosterone production in rat adrenal cells at concentrations up to 30 µM. In addition, serum testosterone and androstenedione levels in human chorionic gonadotropin-injected hypophysectomized rats were significantly reduced by single oral administration of orteronel at a dose of 30 mg/kg (both p ≤ 0.01); serum corticosterone and aldosterone levels in ACTH-injected hypophysectomized rats did not result in significant differences compared with controls, following orteronel administration at doses up to 300 mg/kg. Serum testosterone levels in intact male rats were significantly reduced by orteronel 4h after dosing at 100mg/kg (p ≤ 0.01); testosterone levels showed a tendency to recover afterward. In intact male rats, the weight of the prostate glands and seminal vesicles was decreased in a dose-dependent manner following multiple doses of orteronel at 37.5, 150, and 600 mg/kg, TID for 4 days. The reversibility of orteronel was further confirmed using a human adrenocortical tumor cell line. In summary, orteronel is a selective and reversible 17,20-lyase inhibitor, and decreases the weight of androgen-dependent organs in male rats. Our data suggests that orteronel would therefore be effective for androgen-dependent disorders such as PC.


Subject(s)
Androgens/metabolism , Imidazoles/pharmacology , Naphthalenes/pharmacology , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Steroids/metabolism , Adrenal Glands/drug effects , Adrenal Glands/metabolism , Androgens/blood , Animals , Imidazoles/chemistry , Imidazoles/pharmacokinetics , Male , Naphthalenes/chemistry , Naphthalenes/pharmacokinetics , Organ Size/drug effects , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/enzymology , Rats , Steroid 11-beta-Hydroxylase/antagonists & inhibitors , Steroid 11-beta-Hydroxylase/metabolism , Steroid 17-alpha-Hydroxylase/metabolism , Steroids/blood , Testis/drug effects , Testis/metabolism
14.
Endocrinology ; 153(11): 5297-308, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23027808

ABSTRACT

Metastin/kisspeptin, a hypothalamic peptide, plays a pivotal role in controlling GnRH neurons. Here we studied the effect of chronic sc administration of two kisspeptin analogs, KISS1-305 and TAK-448, on hypothalamic-pituitary-gonadal function in male rats in comparison with a GnRH analogue leuprolide or bilateral orchiectomy (ORX). The prototype polypeptide, KISS1-305 (1-4 nmol/h), caused substantial elevations of plasma LH and testosterone, followed by abrupt reductions of both hormone levels. Notably, testosterone levels were reduced to castrate levels within 3 d and remained depleted throughout the 4-wk dosing period, an effect that was faster and more pronounced than leuprolide (1 nmol/h) dosing. KISS1-305 also reduced genital organ weight more profoundly than leuprolide. In mechanistic studies, chronic KISS1-305 administration only transiently induced c-Fos expression in GnRH neurons, suggesting that GnRH-neural response was attenuated over time. Hypothalamic GnRH content was reduced to 10-20% of control at 3 wk without any changes in Gnrh mRNA expression. Dosing with the investigational peptide TAK-448 was also studied to extend our understanding of hypothalamic-pituitary functions. Similar to ORX, TAK-448 (0.1 nmol/h) depleted testosterone and decreased GnRH content by 4 wk. However, in contrast to ORX, TAK-448 decreased gonadotropin levels in pituitary and plasma samples, implying the suppression of GnRH pulses. These results suggest that chronic administration of kisspeptin analogs disrupts endogenous kisspeptin signals to suppress intrinsic GnRH pulses, perhaps by attenuating GnRH-neural response and inducing continuous GnRH leakage from the hypothalamus. The potential utility of kisspeptin analogs as novel agents to treat hormone-related diseases, including prostate cancer, is discussed.


Subject(s)
Hypothalamo-Hypophyseal System/drug effects , Kisspeptins/pharmacology , Neurons/drug effects , Testis/drug effects , Testosterone/blood , Animals , Gonadotropin-Releasing Hormone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Leuprolide/pharmacology , Luteinizing Hormone/blood , Male , Neurons/metabolism , Orchiectomy , Pituitary Gland/drug effects , Pituitary Gland/metabolism , Rats , Rats, Sprague-Dawley , Testis/metabolism
15.
J Steroid Biochem Mol Biol ; 129(3-5): 115-28, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22249003

ABSTRACT

Surgical or pharmacologic methods to control gonadal androgen biosynthesis are effective approaches in the treatment of a variety of non-neoplastic and neoplastic diseases. For example, androgen ablation and its consequent reduction in circulating levels of testosterone is an effective therapy for advanced prostate cancers. Unfortunately, the therapeutic effectiveness of this approach is often temporary because of disease progression to the 'castration resistant' (CRPC) state, a situation for which there are limited treatment options. One mechanism thought to be responsible for the development of CRPC is extra-gonadal androgen synthesis and the resulting impact of these residual extra-gonadal androgens on prostate tumor cell proliferation. An important enzyme responsible for the synthesis of extra-gonadal androgens is CYP17A1 which possesses both 17,20-lyase and 17-hydroxylase catalytic activities with the 17,20-lyase activity being key in the androgen biosynthetic process. Orteronel (TAK-700), a novel, selective, and potent inhibitor of 17,20-lyase is under development as a drug to inhibit androgen synthesis. In this study, we quantified the inhibitory activity and specificity of orteronel for testicular and adrenal androgen production by evaluating its effects on CYP17A1 enzymatic activity, steroid production in monkey adrenal cells and human adrenal tumor cells, and serum levels of dehydroepiandrosterone (DHEA), cortisol, and testosterone after oral dosing in castrated and intact male cynomolgus monkeys. We report that orteronel potently suppresses androgen production in monkey adrenal cells but only weakly suppresses corticosterone and aldosterone production; the IC(50) value of orteronel for cortisol was ~3-fold higher than that for DHEA. After single oral dosing, serum levels of DHEA, cortisol, and testosterone were rapidly suppressed in intact cynomolgus monkeys. In castrated monkeys treated twice daily with orteronel, suppression of DHEA and testosterone persisted throughout the treatment period. In both in vivo models and in agreement with our in vitro data, suppression of serum cortisol levels following oral dosing was less than that seen for DHEA. In terms of human CYP17A1 and human adrenal tumor cells, orteronel inhibited 17,20-lyase activity 5.4 times more potently than 17-hydroxylase activity in cell-free enzyme assays and DHEA production 27 times more potently than cortisol production in human adrenal tumor cells, suggesting greater specificity of inhibition between 17,20-lyase and 17-hydroxylase activities in humans vs monkeys. In summary, orteronel potently inhibited the 17,20-lyase activity of monkey and human CYP17A1 and reduced serum androgen levels in vivo in monkeys. These findings suggest that orteronel may be an effective therapeutic option for diseases where androgen suppression is critical, such as androgen sensitive and CRPC.


Subject(s)
Adrenal Glands/cytology , Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Naphthalenes/pharmacology , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Steroids/blood , Steroids/metabolism , Adrenal Glands/drug effects , Androgen Antagonists/pharmacology , Androgens/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Dehydroepiandrosterone/antagonists & inhibitors , Dehydroepiandrosterone/blood , Humans , Hydrocortisone/antagonists & inhibitors , Hydrocortisone/blood , Imidazoles/blood , Ketoconazole/pharmacology , Macaca fascicularis , Male , Naphthalenes/blood , Orchiectomy , Steroid 17-alpha-Hydroxylase/metabolism , Testosterone/antagonists & inhibitors , Testosterone/blood
16.
Bioorg Med Chem ; 20(1): 422-34, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22094279

ABSTRACT

A series of 4-phenylpyrrole derivatives D were designed, synthesized, and evaluated for their potential as novel orally available androgen receptor antagonists therapeutically effective against castration-resistant prostate cancers. 4-Phenylpyrrole compound 1 exhibited androgen receptor (AR) antagonistic activity against T877A and W741C mutant-type ARs as well as wild-type AR. An arylmethyl group incorporated into compound 1 contributed to enhancement of antagonistic activity. Compound 4n, 1-{[6-chloro-5-(hydroxymethyl)pyridin-3-yl]methyl}-4-(4-cyanophenyl)-2,5-dimethyl-1H-pyrrole-3-carbonitrile exhibited inhibitory effects on tumor cell growth against the bicalutamide-resistant LNCaP-cxD2 cell line as well as the androgen receptor-dependent JDCaP cell line in a mouse xenograft model. These results demonstrate that this series of pyrrole compounds are novel androgen receptor antagonists with efficacy against prostate cancer cells, including castration-resistant prostate cancers such as bicalutamide-resistant prostate cancer.


Subject(s)
Androgen Receptor Antagonists/chemical synthesis , Antineoplastic Agents/chemical synthesis , Drug Design , Pyrroles/chemistry , Receptors, Androgen/chemistry , Amino Acid Substitution , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Androgen Receptor Antagonists/toxicity , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Male , Mice , Mice, Inbred ICR , Mice, Nude , Mutation , Prostatic Neoplasms/drug therapy , Pyrroles/pharmacology , Pyrroles/therapeutic use , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Transplantation, Heterologous
17.
Bioorg Med Chem ; 19(21): 6383-99, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21978946

ABSTRACT

A novel naphthylmethylimidazole derivative 1 and its related compounds were identified as 17,20-lyase inhibitors. Based on the structure-activity relationship around the naphthalene scaffold and the results of a docking study of 1a in the homology model of 17,20-lyase, the 6,7-dihydro-5H-pyrrolo[1,2-c]imidazole derivative (+)-3c was synthesized and identified as a potent and highly selective 17,20-lyase inhibitor. Biological evaluation of (+)-3c at a dose of 1mg/kg in a male monkey model revealed marked reductions in both serum testosterone and dehydroepiandrosterone concentrations. Therefore, (+)-3c (termed orteronel [TAK-700]) was selected as a candidate for clinical evaluation and is currently in phase III clinical trials for the treatment of castration-resistant prostate cancer.


Subject(s)
Antineoplastic Agents/chemistry , Enzyme Inhibitors/chemistry , Imidazoles/pharmacology , Naphthalenes/pharmacology , Prostatic Neoplasms/drug therapy , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Crystallography, X-Ray , Dehydroepiandrosterone/blood , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Haplorhini , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Male , Models, Molecular , Molecular Dynamics Simulation , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Prostatic Neoplasms/blood , Prostatic Neoplasms/enzymology , Stereoisomerism , Structure-Activity Relationship , Testosterone/blood
18.
J Med Chem ; 54(14): 4998-5012, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21657270

ABSTRACT

We previously discovered an orally active human gonadotropin-releasing hormone (GnRH) receptor antagonist, thieno[2,3-d]pyrimidine-2,4-dione derivative 1 (sufugolix). To reduce the cytochrome P450 (CYP) inhibitory activity and improve in vivo GnRH antagonistic activity, further optimization of this scaffold was carried out. We focused our synthetic efforts on chemical modification at the 5 and 3 positions of the thieno[2,3-d]pyrimidine-2,4-dione ring based on computational modeling, which resulted in the discovery of 1-{4-[1-(2,6-difluorobenzyl)-5-[(dimethylamino)methyl]-3-(6-methoxypyridazin-3-yl)-2,4-dioxo-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidin-6-yl]phenyl}-3-methoxyurea (16b) as a highly potent and orally active GnRH antagonist. Compound 16b showed potent in vitro GnRH antagonistic activity in the presence of fetal bovine serum (FBS) without CYP inhibition. Oral administration of 16b maintained the suppressive effect of the plasma luteinizing hormone levels in castrated cynomolgus monkeys at a 3 mg/kg dose for more than 24 h. Compound 16b is currently under clinical development with the code name of TAK-385.


Subject(s)
Phenylurea Compounds/chemical synthesis , Pyrimidinones/chemical synthesis , Receptors, LHRH/antagonists & inhibitors , Administration, Oral , Animals , CHO Cells , Cattle , Cricetinae , Cricetulus , Cytochrome P-450 CYP3A Inhibitors , Humans , Macaca fascicularis , Male , Models, Molecular , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/pharmacology , Pyrimidinones/pharmacokinetics , Pyrimidinones/pharmacology , Radioligand Assay , Rats , Species Specificity , Structure-Activity Relationship
19.
Bioorg Med Chem ; 19(7): 2428-42, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21429754

ABSTRACT

A novel series of biphenylylmethylimidazole derivatives and related compounds were synthesized as inhibitors of 17,20-lyase, a key enzyme in the production of steroid hormones, and their biological activities were evaluated. In an attempt to identify potent and selective inhibitors of 17,20-lyase over the related CYP3A4 enzyme, a homology model for human 17,20-lyase was developed using the X-ray crystallographic structure of the mammalian CYP2C5 enzyme. With the aid of molecular modeling, optimization of the biphenyl moiety was performed to give an acetamide derivative, which was resolved by HPLC to give the active (-)-enantiomer. The obtained active enantiomer showed not only potent inhibition of both rat and human 17,20-lyase,with IC(50) values of 14 and 26 nM, respectively, but also excellent selectivity (>300-fold) for inhibition of 17,20-lyase over CYP3A4. Moreover, the active enantiomer significantly reduced both serum testosterone and DHEA concentrations in a monkey model after single oral administration. Asymmetric synthesis of the active enantiomer was also developed via a chiral intermediate using a diastereoselective Grignard reaction.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Imidazoles/chemistry , Imidazoles/pharmacology , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Animals , Crystallography, X-Ray , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP3A Inhibitors , Enzyme Inhibitors/chemical synthesis , Humans , Imidazoles/chemical synthesis , Inhibitory Concentration 50 , Macaca fascicularis , Male , Models, Molecular , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
20.
Bioorg Med Chem ; 19(5): 1751-70, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21316976

ABSTRACT

A novel series of naphthylmethylimidazole derivatives and related compounds have been investigated as selective 17,20-lyase inhibitors. Optimization of the substituent at the 6-position on the naphthalene ring was performed to yield a methylcarbamoyl derivative, which exhibited potent inhibitory activity against human 17,20-lyase and promising selectivity (>200-fold) for 17,20-lyase over CYP3A4. Further modifications of the methylcarbamoyl derivative led to the discovery of the corresponding tricyclic compound, which showed highly potent activity against human 17,20-lyase (IC(50) 19 nM) and good selectivity (>1000-fold) for inhibition of 17,20-lyase over CYP3A4. Additional biological evaluation revealed that the tricyclic compound had potent in vivo efficacy in monkeys and favorable pharmacokinetic profiles when administered in rats. Asymmetric synthesis of the selective tricyclic inhibitor was also achieved using a chiral α-hydroxy ketone.


Subject(s)
Drug Design , Imidazoles/chemical synthesis , Lyases/antagonists & inhibitors , Models, Molecular , Naphthalenes/chemistry , Naphthalenes/chemical synthesis , Animals , Cytochrome P-450 CYP3A/pharmacology , Haplorhini , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Inhibitory Concentration 50 , Molecular Structure , Naphthalenes/pharmacology , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL