Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(27): 18470-18483, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38921686

ABSTRACT

Luminescent radicals have been intensively studied as a new class of materials exhibiting novel photofunctions unique to open-shell systems. When luminescent radicals are assembled, intriguing spin-correlated luminescence phenomena emerge, including excimer-like emission and magnetic-field effects on luminescence (i.e., magnetoluminescence, MagLum). However, the underlying mechanisms of these phenomena arising from spin multiplicity and spin-dependent excited-state dynamics are poorly understood due to the limited number of luminescent polyradical systems available for study. In particular, the correlation between stronger intramolecular exchange interactions (|2J/kB| > ∼10 K, where J and kB are the intramolecular exchange coupling constant and the Boltzmann constant, respectively) and luminescence properties has not been fully explained. In this study, a novel carbazole-containing diradical emitter (1) and the corresponding monoradical (2) were prepared for the in-depth study of spin-correlated luminescence properties, with luminescence measurements under magnetic fields of up to 18 T. Diradical 1 has a negative 2J/kB value of several tens of kelvin and exhibits a single-molecule MagLum and thermally activated luminescence, whereas 2 does not. Detailed quantitative analyses revealed that both the spin-correlated luminescence properties of 1 are strongly dominated by ground-state spin statistics based on the Boltzmann distribution (i.e., 2J/kB values). Furthermore, diradical 1 exhibits external heavy-atom effects in heavy-atom-containing solvents such as iodobenzene, whereas monoradical 2 does not. This is the first experimental verification of external heavy-atom effects in polyradical emitters. This work demonstrates that polyradical emitters can be designed based on spin degrees of freedom in both ground and excited states.

2.
Chem Rev ; 124(3): 1034-1121, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38230673

ABSTRACT

Organic radicals are attracting increasing interest as a new class of molecular emitters. They demonstrate electronic excitation and relaxation dynamics based on their doublet or higher multiplet spin states, which are different from those based on singlet-triplet manifolds of conventional closed-shell molecules. Recent studies have disclosed luminescence properties and excited state dynamics unique to radicals, such as highly efficient electron-photon conversion in OLEDs, NIR emission, magnetoluminescence, an absence of heavy atom effect, and spin-dependent and spin-selective dynamics. These are difficult or sometimes impossible to achieve with closed-shell luminophores. This review focuses on luminescent organic radicals as an emerging photofunctional molecular system, and introduces the material developments, fundamental properties including luminescence, and photofunctions. Materials covered in this review range from monoradicals, radical oligomers, and radical polymers to metal complexes with radical ligands demonstrating radical-involved emission. In addition to stable radicals, transiently formed radicals generated in situ by external stimuli are introduced. This review shows that luminescent organic radicals have great potential to expand the chemical and spin spaces of luminescent molecular materials and thus broaden their applicability to photofunctional systems.

3.
J Am Chem Soc ; 145(25): 13615-13622, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37311307

ABSTRACT

Luminescent radicals are an emerging class of materials that exhibit unique photofunctions not found in closed-shell molecules due to their open-shell electronic structure. Particularly promising are photofunctions in which radical's spin and luminescence are correlated; for example, when a magnetic field can affect luminescence (i.e., magnetoluminescence, ML). These photofunctions could be useful in the new science of spin photonics. However, previous observations of ML in radicals have been limited to systems in which radicals are randomly doped in host crystals or polymerized through metal complexation. This study shows that a covalently linked luminescent radical dimer (diradical) can exhibit ML as a single-molecular property. This facilitates detailed elucidation of the requirements for and mechanisms of ML in radicals and can aid the rational design of ML-active radicals based on synthetic chemistry.

4.
Chem Sci ; 13(45): 13418-13425, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36507177

ABSTRACT

Donor-radical acceptor systems have recently attracted much attention as efficient doublet emitters that offer significant advantages for applications such as OLEDs. We employed an alkylbenzene (mesityl group) as the simplest donor to date and added it to a diphenylpyridylmethyl radical acceptor. The (3,5-difluoro-4-pyridyl)bis[2,6-dichloro-4-(2,4,6-trimethylphenyl)phenyl]methyl radical (Mes2F2PyBTM) was prepared in only three steps from commercially available reagents. A stable radical composed of only one pyridine ring, four benzene rings, methyl groups, halogens, and hydrogens showed fluorescence of over 60% photoluminescence quantum yield (PLQY) in chloroform, dichloromethane, and PMMA. The key to high fluorescence efficiency was benzene rings perpendicular to the diphenylpyridylmethyl radical in the doublet ground (D0) state. The relatively low energy of the ß-HOMO and the electron-accepting character of the radical enabled the use of benzenes as electron donors. Furthermore, the structural relaxation of the doublet lowest excited (D1) state was minimized by steric hindrance of the methyl groups. The reasons for this high efficiency include the relatively fast fluorescence transition and the slow internal conversion, both of which were explained by the overlap density between the D1 and D0 states.

5.
J Am Chem Soc ; 144(48): 21980-21991, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36411699

ABSTRACT

Formation of a partially charge-transfer or partially oxidized/reduced state has been one of the most important requirements for the development of highly conducting molecular materials, such as organic metals and superconductors. This requirement has been fulfilled by combining appropriate electron-donor and acceptor molecules to construct multi-component molecular complexes/salts, such as (TTF+0.59)(TCNQ-0.59) and (BEDT-TTF+0.5)2X-, where TTF = tetrathiafulvalene, TCNQ = tetracyanoquinodimethane, BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene, and X = monovalent inorganic anion. Here, we propose a methodology to fulfill this requirement by a single neutral molecule; namely, we have connected two TTF+0.5-type partially oxidized π-skeletons through a boron anion to design a purely organic zwitterionic neutral radical {[(PDT-TTF-Cat)2]+B-}•. This molecule was successfully obtained as air-stable crystals containing solvent tetrahydrofuran (THF) molecules. Measurements of electrical resistivity, magnetic susceptibility, and X-ray diffraction reveal that the partially oxidized state is certainly formed, which enables realization of a 3/4-filled electron band. Furthermore, this system has intramolecular charge degrees of freedom, attributable to the two TTF+0.5 π-skeletons introduced into the molecule. The resulting interplay of intra- and intermolecular charge degrees of freedom (or simply, intra- and intermolecular electronic interactions) has led to multi-step phase transitions and crossover, providing unique strongly correlated electron properties, such as the formation of a three-dimensional charge-ordered dimer-Mott insulating state and its melting triggered by disorder-order transformation of the co-crystallized solvent THF molecules at low temperatures.

6.
Chem Commun (Camb) ; 58(15): 2560-2563, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35103725

ABSTRACT

The luminescence of stable radicals can be enhanced by coordination to metal complexes. The 4% fluorescence quantum yield of (3,5-difluoro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (F2PyBTM) in dichloromethane was enhanced up to 36% by coordination to AuI with N-heterocyclic carbene ligand, which is a record for metal-radical complexes.

7.
Molecules ; 26(18)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34577066

ABSTRACT

New magnetic metal complexes with organic radical ligands, [M(hfac)2(PyBTM)2] (M = NiII, CoII; hfac = hexafluoroacetylacetonato, PyBTM = (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical), were prepared and their crystal structures, magnetic properties, and electronic structures were investigated. Metal ions in [M(hfac)2(PyBTM)2] constructed distorted octahedral coordination geometry, where the two PyBTM molecules ligated in the trans configuration. Magnetic investigation using a SQUID magnetometer revealed that χT increased with decreasing temperature from 300 K in the two complexes, indicating an efficient intramolecular ferromagnetic exchange interaction taking place between the spins on PyBTM and M with J/kB of 21.8 K and 11.8 K for [NiII(hfac)2(PyBTM)2] and [CoII(hfac)2(PyBTM)2]. The intramolecular ferromagnetic couplings in the two complexes could be explained by density functional theory calculations, and would be attributed to a nearly orthogonal relationship between the spin orbitals on PyBTM and the metal ions. These results demonstrate that pyridyl-containing triarylmethyl radicals are key building blocks for magnetic molecular materials with controllable/predictable magnetic interactions.

8.
Chem Asian J ; 16(17): 2538-2544, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34270166

ABSTRACT

Polychlorinated pyridyldiphenylmethyl radicals having substituents meta to the position bearing the carbon-centered radical (α-carbon) are synthesized. All of them are stable in ambient conditions in solutions and fluorescent in cyclohexane. The fluorescence of the radicals with bromo, phenyl, 4-chlorophenyl, or 2-pyridyl substituents are enhanced in chloroform, while the emission of the radicals with 2-thienyl or 2-furyl substituents are quenched in chloroform. DFT and TD-DFT calculations indicate that the first doublet excited states of the former are locally excited, while the first doublet excited states of the latter are charge transfer states from the π-electron-donating substituent to the accepting radical. The latter also show much higher photostability under 370-nm light irradiation compared with the first reported photostable fluorescent radical, (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (PyBTM), with pronounced bathochromic shifts of the fluorescence.

9.
Chem Sci ; 12(6): 2025-2029, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-34163964

ABSTRACT

Organic radicals are an emerging class of luminophores possessing multiplet spin states and potentially showing spin-luminescence correlated properties. We investigated the mechanism of recently reported magnetic field sensitivity in the emission of a photostable luminescent radical, (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (PyBTM) doped into host αH-PyBTM molecular crystals. The magnetic field (0-14 T), temperature (4.2-20 K), and the doping concentration (0.1, 4, 10, and 22 wt%) dependence on the time-resolved emission were examined by measuring emission decays of the monomer and excimer. Quantum mechanical simulations on the decay curves disclosed the role of the magnetic field; it dominantly affects the spin sublevel population of radical dimers in the ground states. This situation is distinctly different from that in conventional closed-shell luminophores, where the magnetic field modulates their excited-state spin multiplicity. Namely, the spin degree of freedom of ground-state open-shell molecules is a new key for achieving magnetic-field-controlled molecular photofunctions.

10.
J Am Chem Soc ; 143(15): 5610-5615, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33826332

ABSTRACT

Spin-correlated electronic and magnetic properties of organic radicals have been developed, but luminescence properties, based on interplay with spins, have rarely been reported. The effect of magnetic fields on luminescence (i.e., magnetoluminescence) is a rare example of such properties, observed to date only in radicals dispersed in host matrices. We now report a novel method for achieving radical magnetoluminescence involving radical-based coordination polymers (CPs). The luminescence properties of the bis(3,5-dichloro-4-pyridyl)(2,4,6-trichlorophenyl)methyl (bisPyTM) and tris(3,5-dichloro-4-pyridyl)methyl (trisPyM) radicals and their 1D and 2D ZnII CPs were investigated. Although solid-state emissions of bisPyTM and trisPyM were not affected significantly by external magnetic fields at 4.2 K, those of CPs were greatly modulated. Studies of the crystal structures, magnetic properties, and the temperature-dependence and time-resolved properties of the magnetoluminescence indicate that the reduction of radical-radical interactions in CPs would be a key method for achieving magnetoluminescence.


Subject(s)
Free Radicals/chemistry , Magnetic Fields , Polymers/chemistry , Quantum Theory , Spectrometry, Fluorescence , Zinc/chemistry
11.
J Am Chem Soc ; 143(11): 4329-4338, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33721501

ABSTRACT

The use of organic radicals as building blocks is an effective approach to the production of open-shell coordination polymers (CPs). Two-dimensional (2D) CPs with honeycomb spin-lattices have attracted attention because of the unique electronic structures and physical properties afforded by their structural topology. However, radical-based CPs with honeycomb spin-lattices tend to have low chemical stability or poor crystallinity, and thus novel systems with high crystallinity and persistence are in strong demand. In this study, a novel triangular organic radical possessing three pyridyl groups, tris(3,5-dichloro-4-pyridyl)methyl radical (trisPyM) was prepared. It exhibits luminescence, high photostability, and a coordination ability, allowing formation of defined and persistent 2D CPs. Optical measurements confirmed the luminescence of trisPyM both in solution and in the solid state, with emission wavelengths, λem, of 665 and 700 nm, respectively. trisPyM exhibits better chemical stability under photoirradiation than other luminescent radicals: the half-life of trisPyM in CH2Cl2 was 10 000 times that of the tris(2,4,6-trichlorophenyl)methyl radical (TTM), a conventional luminescent radical. Complexation between trisPyM and ZnII(hfac)2 yielded a single crystal of a 2D CP trisZn, possessing a honeycomb lattice with graphene-like spin topology. The coordination structure of trisZn is stable under evacuation at 60 °C. Moreover, trisZn exhibits luminescence at 79 K, with λem = 695 nm, and is a rare example of a luminescent material among 2D radical-based CPs. Our results indicate that trisPyM may be a promising building block in the construction of a new class of 2D honeycomb CPs with novel properties, including luminescence.

12.
Sci Rep ; 11(1): 1332, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33446711

ABSTRACT

Magnetic properties of Mott-Hubbard systems are generally dominated by strong antiferromagnetic interactions produced by the Coulomb repulsion of electrons. Although theoretical possibility of a ferromagnetic ground state has been suggested by Nagaoka and Penn as single-hole doping in a Mott insulator, experimental realization has not been reported more than half century. We report the first experimental possibility of such ferromagnetism in a molecular Mott insulator with an extremely light and homogeneous hole-doping in π-electron layers induced by net polarization of counterions. A series of Ni(dmit)2 anion radical salts with organic cations, where dmit is 1,3-dithiole-2-thione-4,5-dithiolate can form bi-layer structure with polarized cation layers. Heat capacity, magnetization, and ESR measurements substantiated the formation of a bulk ferromagnetic state around 1.0 K with quite soft magnetization versus magnetic field (M-H) characteristics in (Et-4BrT)[Ni(dmit)2]2 where Et-4BrT is ethyl-4-bromothiazolium. The variation of the magnitude of net polarizations by using the difference of counter cations revealed the systematic change of the ground state from antiferromagnetic one to ferromagnetic one. We also report emergence of metallic states through further doping and applying external pressures for this doping induced ferromagnetic state. The realization of ferromagnetic state in Nagaoka-Penn mechanism can paves a way for designing new molecules-based ferromagnets in future.

13.
Angew Chem Int Ed Engl ; 60(10): 5179-5183, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33207016

ABSTRACT

Developing tunable motifs for heterometallic interactions should be beneficial for fabricating functional materials based on cooperative electronic communications between metal centers. Reported here is the efficient formation of cyclic heterometallic interactions from a complex containing an artificial tripeptide with metal binding sites on its main chain and side chains. X-ray structural analysis and X-ray absorption spectroscopy revealed that the cyclic metal-metal arrangements arise from the amide groups connecting four square-planar CuII centers and four octahedral NiII centers in a cyclic manner. UV/Vis spectral studies suggested that this efficient formation was achieved by the selective formation of the square-planar CuII centers and a crystallization process. Magnetic measurements using SQUID clarified that the cyclic complex represented the S=2 spin state at low temperatures due to effective antiferromagnetic interactions between the NiII and CuII centers.

14.
Chem Commun (Camb) ; 56(76): 11195-11198, 2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32870194

ABSTRACT

A ZnII complex based on a luminescent organic radical was doped into host molecular crystals. The 5, 10, and 20 wt%-doped crystals showed excimer emissions and their luminescent behaviours were significantly modulated by an external magnetic field. These are the first examples showing excimer emissions and magnetic-field-sensitive luminescent properties for complexes based on luminescent radicals. The excimer species contributing to magnetoluminescence was determined by analyzing the emission spectra and their magnetic-field dependencies. These results suggest the general nature of magnetic field effects on the luminescence of radicals as well as the importance of the type of interaction between radicals.

15.
ACS Omega ; 4(2): 3653-3659, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-31459578

ABSTRACT

To understand the degradation mechanism of the copper-ion-exchanged SSZ-13 (Cu-SSZ-13) is of high significance for rationally designing a zeolitic catalyst for ammonia-selective catalytic reduction of NO x (NH3-SCR). In this work, we focused on an Al-rich Cu-SSZ-13 and studied its structural degradation under hydrothermal conditions through a set of characterization techniques, including in situ X-ray diffraction (XRD), pair distribution function analysis and transmission electron microscopy-energy dispersive X-ray analysis (TEM-EDX). The results indicated that the chabazite structure tends to contract in the c direction upon hydrothermal treatment and consequently leads to the collapse of the four-membered ring. Such a structure change then results in the movement of isolated Cu2+ species from the face of the double six-membered ring to its center, which damages the structure further. However, the larger rings (6MRs and 8MRs) partially remain during the structure degradation, which possibly explains that some of the isolated Cu2+ species are alive even when the XRD-detectable crystallinity completely loses. The particle-by-particle observations through TEM-EDX analysis suggested that the occurrence of structural degradation differs remarkably from one individual particle to another. In general, particles with smaller size, having a lower Si/Al ratio and a higher Cu/Al ratio, tend to degrade easily. These results offer a thorough understanding of the structural degradation of Cu-SSZ-13 from the microscopic point of view and point out that the uniformity in composition and particle size of the zeolites plays a critical role in the early-stage degradation.

16.
Dalton Trans ; 48(21): 7090-7093, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-30681087

ABSTRACT

The one-dimensional coordination polymer composed of CuII and an organic radical bisPyTM displayed temperature dependent Jahn-Teller distortion, which is correlated to the π-conjugation mode at the ligand as well as the magnetic properties. The ferromangetic bisPyTM-CuII interaction was enhanced by the reorientation of the CuII dx2-y2 orbital at low temperature.

17.
RSC Adv ; 9(29): 16790-16796, 2019 May 24.
Article in English | MEDLINE | ID: mdl-35516373

ABSTRACT

Shortening the synthesis time of SSZ-16 (AFX type) zeolite from several days to 2 h has been achieved using an ultrafast synthesis route involving N,N,N',N'-tetraethylbicyclo[2.2.2]oct-7-ene-2,3:5,6-dipyrrolidinium (TEBOP) as an organic structure-directing agent (OSDA) in a tubular reactor assisted by seed crystals. Recently, copper exchanged SSZ-16 has been looked upon as one of the few equivalents to SSZ-13 for the selective catalytic reduction of NOx with ammonia (NH3-SCR) from automobile exhausts. Hydrothermal stability is one of the crucial properties for any zeolites that compete for automobile applications. All the samples prepared were analyzed using sophisticated physio-chemical techniques and those prepared from TEBOP were subjected to SCR of NOx reactions. The rapid crystal growth induced by high synthesis temperature bestowed the ultrafast prepared SSZ-16 with high crystallinity and hydrothermal stability as well as enhanced SCR of NOx activity even when aged at 800 °C. Compared to 1,1'-(1,4-butanediyl)bis-4-aza-1-azoniabicyclo[2.2.2]octane dibromide (DABCO), TEBOP was found to be desirable as an OSDA for high crystallinity and hydrothermal stability.

18.
Angew Chem Int Ed Engl ; 58(9): 2606-2611, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30575238

ABSTRACT

The excited-state dynamics of the photostable luminescent organic radical (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl (PyBTM) doped in a host crystal was investigated by using optically detected magnetic resonance (ODMR) and time-resolved emission spectroscopies. In the radical system, the unpaired electron can be used as the probe for studying the electronic state and its dynamics. The mixed crystal with a high concentration of the radical showed excimer emission, together with the monomer emission. The ODMR signals were observed with opposite signs for monitoring the monomer and the excimer emissions. Based on their temperature and concentration dependencies, the excited-state dynamics on the doped crystal and the mechanism of the excimer formation and the ODMR signal generation are discussed with the help of the quantum mechanical simulation of the excited-state spin dynamics. The initial process of excimer formation has been clarified for the first time from the viewpoint of the spin-dynamics.

19.
Nature ; 563(7732): 480-481, 2018 11.
Article in English | MEDLINE | ID: mdl-30464278
20.
Angew Chem Int Ed Engl ; 57(39): 12711-12715, 2018 Sep 24.
Article in English | MEDLINE | ID: mdl-29888548

ABSTRACT

We investigated the emission properties of a photostable luminescent organic radical, (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (PyBTM), doped into host molecular crystals. The 0.05 wt %-doped crystals displayed luminescence attributed to a PyBTM monomer with a room-temperature emission quantum yield of 89 %, which is exceptionally high among organic radicals. The 10 wt %-doped crystals exhibited both PyBTM monomer and excimer-centered emission bands, and the intensity ratio of these two bands was modulated drastically by applying a magnetic field of up to 18 T at 4.2 K. This is the first observation of a magnetic field affecting the luminescence of organic radicals, and we also proposed a mechanism for this effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...