Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Physiol Mol Biol Plants ; 27(6): 1353-1359, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34220045

ABSTRACT

Polyamine levels are controlled by biosynthesis, intra- and inter-cellular flux by the respective transporters, and catabolism. The catabolism is catalyzed by two groups of enzymes. One is copper-containing amine oxidases and the other is polyamine oxidases (PAOs). In Oryza sativa, seven PAO genes exist and they are termed as OsPAO1 to OsPAO7. However, their physiological function has not been elucidated yet. Here, we examined the expressional changes of seven OsPAO genes upon abiotic and oxidative stress, phytohormone, and exogenous polyamines application. The transcript of extracellular polyamine oxidase OsPAO2 and OsPAO6 are strongly induced upon wounding, drought, salinity, oxidative stress (H2O2), and exogenous application of jasmonic acid, spermidine, spermine, thermospermine and negatively regulated upon indole acetic acid, isopentenyl adenine (iPT), gibberellic acid (GA), abscisic acid; OsPAO7 is to iPT, GA and all polyamines; OsPAO4 and OsPAO5 are mildly responsive to heat, cold, oxidative stress. These results suggest that polyamine oxidase encoding extracellular enzyme may play a pivotal role during exogenous stimulus to protect the plant cell. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01006-1.

2.
Physiol Mol Biol Plants ; 27(3): 577-586, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33854285

ABSTRACT

Arabidopsis thaliana polyamine oxidase 5 gene (AtPAO5) functions as a thermospermine (T-Spm) oxidase. Aerial growth of its knock-out mutant (Atpao5-2) was significantly repressed by low dose(s) of T-Spm but not by other polyamines. To figure out the underlying mechanism, massive analysis of 3'-cDNA ends was performed. Low dose of T-Spm treatment modulates more than two fold expression 1,398 genes in WT compared to 3186 genes in Atpao5-2. Cell wall, lipid and secondary metabolisms were dramatically affected in low dose T-Spm-treated Atpao5-2, in comparison to other pathways such as TCA cycle-, amino acid- metabolisms and photosynthesis. The cell wall pectin metabolism, cell wall proteins and degradation process were highly modulated. Intriguingly Fe-deficiency responsive genes and drought stress-induced genes were also up-regulated, suggesting the importance of thermospermi'ne flux on regulation of gene network. Histological observation showed that the vascular system of the joint part between stem and leaves was structurally dissociated, indicating its involvement in vascular maintenance. Endogenous increase in T-Spm and reduction in H2O2 contents were found in mutant grown in T-Spm containing media. The results indicate that T-Spm homeostasis by a fine tuned balance of its synthesis and catabolism is important for maintaining gene regulation network and the vascular system in plants.

3.
Plants (Basel) ; 8(4)2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30991762

ABSTRACT

Of the five polyamine oxidases in Arabidopsis thaliana, AtPAO5 has a substrate preference for the tetraamine thermospermine (T-Spm) which is converted to triamine spermidine (Spd) in a back-conversion reaction in vitro. A homologue of AtPAO5 from the lycophyte Selaginella lepidophylla (SelPAO5) back-converts T-Spm to the uncommon polyamine norspermidine (NorSpd) instead of Spd. An Atpao5 loss-of-function mutant shows a strong reduced growth phenotype when growing on a T-Spm containing medium. When SelPAO5 was expressed in the Atpao5 mutant, T-Spm level decreased to almost normal values of wild type plants, and NorSpd was produced. Furthermore the reduced growth phenotype was cured by the expression of SelPAO5. Thus, a NorSpd synthesis pathway by PAO reaction and T-Spm as substrate was demonstrated in planta and the assumption that a balanced T-Spm homeostasis is needed for normal growth was strengthened.

4.
J Plant Physiol ; 228: 1-11, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29793152

ABSTRACT

Polyamines (PAs) are implicated in developmental processes and stress responses of plants. Polyamine oxidases (PAOs), flavin adenine dinucleotide-dependent enzymes that function in PA catabolism, play a critical role. Even though PAO gene families of Arabidopsis and rice have been intensely characterized and their expression in response to developmental and environmental changes has been investigated, little is known about PAOs in tomato (Solanum lycopersicum). We found seven PAO genes in S. lycopersicum and named them SlPAO1∼7. Plant PAOs form four clades in phylogenetic analysis, of which SlPAO1 belongs to clade-I, SlPAO6 and SlPAO7 to clade-III, and the residual four (SlPAO2∼5) to clade-IV, while none belongs to clade-II. All the clade-IV members in tomato also retain the putative peroxisomal-targeting signals in their carboxy termini, suggesting their peroxisome localization. SlPAO1 to SlPAO5 genes consist of 10 exons and 9 introns, while SlPAO6 and SlPAO7 are intronless genes. To address the individual roles of SlPAOs, we analyzed their expression in various tissues and during flowering and fruit development. The expression of SlPAO2∼4 was constitutively high, while that of the other SlPAO members was relatively lower. We further analyzed the expressional changes of SlPAOs upon abiotic stresses, oxidative stresses, phytohormone application, and PA application. Based on the data obtained, we discuss the distinctive roles of SlPAOs.


Subject(s)
Oxidoreductases Acting on CH-NH Group Donors/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/enzymology , Exons/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Introns/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Oxidoreductases Acting on CH-NH Group Donors/genetics , Phylogeny , Plant Proteins/genetics , Polyamines/metabolism , Polyamine Oxidase
5.
Ann Bot ; 121(6): 1243-1256, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29462244

ABSTRACT

Background and Aims: Polyamines are small metabolites present in all living cells and play fundamental roles in numerous physiological events in plants. The aminopropyltransferases (APTs), spermidine synthase (SPDS), spermine synthase (SPMS) and thermospermine synthase (ACL5), are essential enzymes in the polyamine biosynthesis pathway. In angiosperms, SPMS has evolved from SPDS via gene duplication, whereas in gymnosperms APTs are mostly unexplored and no SPMS gene has been reported. The present study aimed to investigate the functional properties of the SPDS and ACL5 proteins of Scots pine (Pinus sylvestris L.) in order to elucidate the role and evolution of APTs in higher plants. Methods: Germinating Scots pine seeds and seedlings were analysed for polyamines by high-performance liquid chromatography (HPLC) and the expression of PsSPDS and PsACL5 genes by in situ hybridization. Recombinant proteins of PsSPDS and PsACL5 were produced and investigated for functional properties. Also gene structures, promoter regions and phylogenetic relationships of PsSPDS and PsACL5 genes were analysed. Key Results: Scots pine tissues were found to contain spermidine, spermine and thermospermine. PsSPDS enzyme catalysed synthesis of both spermidine and spermine. PsACL5 was found to produce thermospermine, and PsACL5 gene expression was localized in the developing procambium in embryos and tracheary elements in seedlings. Conclusions: Contrary to previous views, our results demonstrate that SPMS activity is not a novel feature developed solely in the angiosperm lineage of seed plants but also exists as a secondary property in the Scots pine SPDS enzyme. The discovery of bifunctional SPDS from an evolutionarily old conifer reveals the missing link in the evolution of the polyamine biosynthesis pathway. The finding emphasizes the importance of pre-existing secondary functions in the evolution of new enzyme activities via gene duplication. Our results also associate PsACL5 with the development of vascular structures in Scots pine.


Subject(s)
Biological Evolution , Pinus sylvestris/metabolism , Polyamines/metabolism , Seeds/metabolism , Spermidine Synthase/metabolism , Gene Expression Regulation, Plant/genetics , In Situ Hybridization , Metabolic Networks and Pathways , Pinus sylvestris/enzymology , Pinus sylvestris/genetics , Promoter Regions, Genetic/genetics , Seeds/enzymology , Spermidine Synthase/genetics , Spermine/analogs & derivatives , Spermine/metabolism , Spermine Synthase/genetics , Spermine Synthase/metabolism
6.
Methods Mol Biol ; 1694: 25-35, 2018.
Article in English | MEDLINE | ID: mdl-29080152

ABSTRACT

Polyamines play important roles in growth, development, and adaptive responses to various stresses. In the past two decades, progress in plant polyamine research has accelerated, and the key molecules and components involved in many biological events have been identified. Recently, polyamine sensors used to detect polyamine-enriched foods and polyamines derived from degrading flesh were identified in fly and zebrafish, respectively. Work has begun to identify such molecules in plants as well. Here, we summarize the current knowledge about polyamines in plants. Furthermore, we discuss the roles of key molecules, such as calcium ions, reactive oxygen species, nitric oxide, γ-aminobutyric acid, polyamine transporters, and the mitogen-activated protein kinase cascade, from the viewpoint of polyamine action.


Subject(s)
Plants/metabolism , Polyamines/metabolism , Biological Transport , Calcium Signaling , Hydrogen Peroxide/metabolism , MAP Kinase Signaling System , Reactive Oxygen Species/metabolism
7.
Methods Mol Biol ; 1694: 389-403, 2018.
Article in English | MEDLINE | ID: mdl-29080182

ABSTRACT

Plant mutants in polyamine pathway genes are ideal for investigating their roles in stress responses. Here we describe easy-to-perform methods for phenotyping Arabidopsis mutants under abiotic stress. These include measurements of root growth, chlorophyll content, water loss, electrolyte leakage, and content of the reactive oxygen species hydrogen peroxide (H2O2) and superoxide anion (O2-). Growth of Arabidopsis seedlings is described that enables transfer to different media for stress treatment without damaging roots.


Subject(s)
Mutation , Phenotype , Polyamines/metabolism , Stress, Physiological , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Chlorophyll/metabolism , Metabolic Networks and Pathways , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Water/metabolism
8.
Plant Signal Behav ; 12(8): e1359456, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28786735

ABSTRACT

Polyamines (PA) in plant play roles in growth and development and in responses to environmental stresses. The family of polyamine oxidases (PAO) contributes to a balanced homeostasis of PAs catalyzing two different reactions, terminal catabolic (TC) and back-conversion (BC) pathway, in PA catabolism. From the seven PAOs encoded by the rice genome (OsPAO1 - OsPAO7) OsPAO6 could so far not be characterized due to failure in obtaining the coding cDNA based on accessions in the genomic databases. We report cloning and characterization of the correct OsPAO6 cDNA with a length of 1,742 bp. The 1,491 bp long open reading frame codes for a 497-amino acid protein from nine exons. The protein which has 92% identity to OsPAO7 localizes to plasma membrane.


Subject(s)
Open Reading Frames/genetics , Oryza/enzymology , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Plant Proteins/genetics , Cloning, Molecular , DNA, Complementary/genetics , Gene Expression Regulation, Plant , Genome, Plant , Plant Cells/enzymology , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Subcellular Fractions/metabolism , Polyamine Oxidase
9.
J Biol Chem ; 291(38): 20198-209, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27502278

ABSTRACT

The cyanelle is a primitive chloroplast that contains a peptidoglycan layer between its inner and outer membranes. Despite the fact that the envelope structure of the cyanelle is reminiscent of Gram-negative bacteria, the Cyanophora paradoxa genome appears to lack genes encoding homologs of putative peptidoglycan-associated outer membrane proteins and outer membrane channels. These are key components of Gram-negative bacterial membranes, maintaining structural stability and regulating permeability of outer membrane, respectively. Here, we discovered and characterized two dominant peptidoglycan-associated outer membrane proteins of the cyanelle (∼2 × 10(6) molecules per cyanelle). We named these proteins CppF and CppS (cyanelle peptidoglycan-associated proteins). They are homologous to each other and function as a diffusion channel that allows the permeation of compounds with Mr <1,000 as revealed by permeability measurements using proteoliposomes reconstituted with purified CppS and CppF. Unexpectedly, amino acid sequence analysis revealed no evolutionary linkage to cyanobacteria, showing only a moderate similarity to cell surface proteins of bacteria belonging to Planctomycetes phylum. Our findings suggest that the C. paradoxa cyanelle adopted non-cyanobacterial lineage proteins as its main outer membrane components, providing a physical link with the underlying peptidoglycan layer and functioning as a diffusion route for various small substances across the outer membrane.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Cell Membrane/metabolism , Cyanophora/metabolism , Peptidoglycan/metabolism , Bacterial Outer Membrane Proteins/genetics , Cell Membrane/genetics , Cyanophora/genetics , Peptidoglycan/genetics
10.
Biosci Biotechnol Biochem ; 80(10): 1954-9, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27310312

ABSTRACT

The major outer membrane protein Mep45 of Selenomonas ruminantium, an anaerobic Gram-negative bacterium, comprises two distinct domains: the N-terminal S-layer homologous (SLH) domain that protrudes into the periplasm and binds to peptidoglycan, and the remaining C-terminal transmembrane domain, whose function has been unknown. Here, we solubilized and purified Mep45 and characterized its function using proteoliposomes reconstituted with Mep45. We found that Mep45 forms a nonspecific diffusion channel via its C-terminal region. The channel was permeable to solutes smaller than a molecular weight of roughly 600, and the estimated pore radius was 0.58 nm. Truncation of the SLH domain did not affect the channel property. On the basis of the fact that Mep45 is the most abundant outer membrane protein in S. ruminantium, we conclude that Mep45 serves as a main pathway through which small solutes diffuse across the outer membrane of this bacterium.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Rumen/microbiology , Selenomonas/metabolism , Anaerobiosis , Animals , Bacterial Proteins/isolation & purification , Diffusion , Membrane Proteins/isolation & purification , Protein Domains , Protein Stability , Solubility
11.
J Antibiot (Tokyo) ; 69(12): 863-870, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27168313

ABSTRACT

Ensuring the stability of the outer membrane permeability barrier is crucial for maintaining drug resistance in Gram-negative bacteria. Lpp protein and Tol-Pal complex are responsible for this function and are widely distributed among Gram-negative bacteria. Thus, these proteins are potential targets to permeabilize the outer membrane barrier. Although deleting these proteins is known to impair the outer membrane stability, the effect of the deletion on the outer membrane barrier property and on the drug resistance has not been fully characterized and evaluated in a quantitative manner. Here, we determined the outer membrane permeability of Escherichia coli Δlpp and Δtol-pal mutants by the assay using intact cells and liposomes reconstituted with the outer membrane proteins. We determined that there was 3- to 5-fold increase of the permeability in Δtol-pal mutants, but not in Δlpp mutant, compared with that in the parental strain. The permeability increase in Δtol-pal mutants occurred without affecting the function of outer membrane diffusion channels, and was most pronounced in the cells at exponential growth phase. The impact of tol-pal deletion on the drug resistance was revealed to be almost comparable with that of deletion of acrAB, a major multidrug efflux transporter of E. coli that makes a predominant contribution to drug resistance. Our observations highlight the importance of Tol-Pal as a possible target to combat multidrug-resistant Gram-negative bacteria.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Cell Membrane Permeability , Escherichia coli Proteins/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Gene Deletion , Anti-Bacterial Agents/pharmacokinetics , Bacterial Outer Membrane Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Proteins/metabolism , Microbial Sensitivity Tests , Penicillin G/pharmacokinetics
12.
Front Plant Sci ; 7: 214, 2016.
Article in English | MEDLINE | ID: mdl-26973665

ABSTRACT

The link between polyamine oxidases (PAOs), which function in polyamine catabolism, and stress responses remains elusive. Here, we address this issue using Arabidopsis pao mutants in which the expression of the five PAO genes is knocked-out or knocked-down. As the five single pao mutants and wild type (WT) showed similar response to salt stress, we tried to generate the mutants that have either the cytoplasmic PAO pathway (pao1 pao5) or the peroxisomal PAO pathway (pao2 pao3 pao4) silenced. However, the latter triple mutant was not obtained. Thus, in this study, we used two double mutants, pao1 pao5 and pao2 pao4. Of interest, pao1 pao5 mutant was NaCl- and drought-tolerant, whereas pao2 pao4 showed similar sensitivity to those stresses as WT. To reveal the underlying mechanism of salt tolerance, further analyses were performed. Na uptake of the mutant (pao1 pao5) decreased to 75% of WT. PAO activity of the mutant was reduced to 62% of WT. The content of reactive oxygen species (ROS) such as hydrogen peroxide, a reaction product of PAO action, and superoxide anion in the mutant became 81 and 72% of the levels in WT upon salt treatment. The mutant contained 2.8-fold higher thermospermine compared to WT. Moreover, the mutant induced the genes of salt overly sensitive-, abscisic acid (ABA)-dependent- and ABA-independent- pathways more strongly than WT upon salt treatment. The results suggest that the Arabidopsis plant silencing cytoplasmic PAOs shows salinity tolerance by reducing ROS production and strongly inducing subsets of stress-responsive genes under stress conditions.

13.
Plant Cell Rep ; 35(6): 1247-57, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26905725

ABSTRACT

KEY MESSAGE: Two genes, LAT1 and OCT1 , are likely to be involved in polyamine transport in Arabidopsis. Endogenous spermine levels modulate their expression and determine the sensitivity to cadaverine. Arabidopsis spermine (Spm) synthase (SPMS) gene-deficient mutant was previously shown to be rather resistant to the diamine cadaverine (Cad). Furthermore, a mutant deficient in polyamine oxidase 4 gene, accumulating about twofold more of Spm than wild type plants, showed increased sensitivity to Cad. It suggests that endogenous Spm content determines growth responses to Cad in Arabidopsis thaliana. Here, we showed that Arabidopsis seedlings pretreated with Spm absorbs more Cad and has shorter root growth, and that the transgenic Arabidopsis plants overexpressing the SPMS gene are hypersensitive to Cad, further supporting the above idea. The transgenic Arabidopsis overexpressing L-Amino acid Transporter 1 (LAT1) absorbed more Cad and showed increased Cad sensitivity, suggesting that LAT1 functions as a Cad importer. Recently, other research group reported that Organic Cation Transporter 1 (OCT1) is a causal gene which determines the Cad sensitivity of various Arabidopsis accessions. Furthermore, their results suggested that OCT1 is involved in Cad efflux. Thus we monitored the expression of OCT1 and LAT1 during the above experiments. Based on the results, we proposed a model in which the level of Spm content modulates the expression of OCT1 and LAT1, and determines Cad sensitivity of Arabidopsis.


Subject(s)
Arabidopsis/growth & development , Cadaverine/pharmacology , Spermine/pharmacology , Arabidopsis/drug effects , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/physiology , Cation Transport Proteins/physiology , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/physiology , Genes, Plant/genetics , Genes, Plant/physiology , Large Neutral Amino Acid-Transporter 1/physiology , Membrane Transport Proteins/physiology , Organic Cation Transporter 1/physiology , Plants, Genetically Modified/physiology , Polymerase Chain Reaction
14.
Plant Biotechnol J ; 14(4): 1116-26, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26402509

ABSTRACT

Enhancement of sugar content and sweetness is desirable in some vegetables and in almost all fruits; however, biotechnological methods to increase sugar content are limited. Here, a completely novel methodological approach is presented that produces sweeter tomato fruits but does not have any negative effects on plant growth. Sucrose-induced repression of translation (SIRT), which is mediated by upstream open reading frames (uORFs), was initially reported in Arabidopsis AtbZIP11, a class S basic region leucine zipper (bZIP) transcription factor gene. Here, two AtbZIP11 orthologous genes, SlbZIP1 and SlbZIP2, were identified in tomato (Solanum lycopersicum). SlbZIP1 and SlbZIP2 contained four and three uORFs, respectively, in the cDNA 5'-leader regions. The second uORFs from the 5' cDNA end were conserved and involved in SIRT. Tomato plants were transformed with binary vectors in which only the main open reading frames (ORFs) of SlbZIP1 and SlbZIP2, without the SIRT-responsive uORFs, were placed under the control of the fruit-specific E8 promoter. Growth and morphology of the resulting transgenic tomato plants were comparable to those of wild-type plants. Transgenic fruits were approximately 1.5-fold higher in sugar content (sucrose/glucose/fructose) than nontransgenic tomato fruits. In addition, the levels of several amino acids, such as asparagine and glutamine, were higher in transgenic fruits than in wild-type fruits. This was expected because SlbZIP transactivates the asparagine synthase and proline dehydrogenase genes. This 'sweetening' technology is broadly applicable to other plants that utilize sucrose as a major translocation sugar.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Fruit/metabolism , Plants, Genetically Modified/metabolism , Solanum lycopersicum/physiology , Sucrose/metabolism , Amino Acids/metabolism , Arabidopsis/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Fructose/metabolism , Fruit/genetics , Gene Expression Regulation, Plant , Glucose/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Open Reading Frames , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Promoter Regions, Genetic
15.
Front Plant Sci ; 6: 687, 2015.
Article in English | MEDLINE | ID: mdl-26442007

ABSTRACT

In Arabidopsis three basic region leucine zipper (bZIP) transcription factor genes, bZIP17, bZIP28, and bZIP60, play crucial roles in the unfolded protein response (UPR). Previously we found that bZIP60 is one of the spermine-induced genes. Consequently we further investigated the response of all the three bZIP genes to spermine. Expression of bZIP17, bZIP28, and bZIP60, and also their target genes was activated by spermine application as well as in plants with elevated endogenous spermine levels. Furthermore, spermine activated the splicing of the bZIP60 transcript mediated by the ribonuclease activity of inositol-requiring enzyme 1 and also recruited bZIP17 and bZIP60 proteins from endoplasmic reticulum to nucleus. We therefore propose that spermine is a novel UPR inducer. Moreover, induction of UPR by spermine required calcium-influx to the cytoplasm and the genes for mitogen-activated protein kinase kinase 9 (MKK9), mitogen-activated protein kinase 3 (MPK3) and MPK6. The result indicates that spermine-induced UPR is mediated by the MKK9-MPK3/MPK6 cascade in Arabidopsis.

16.
FEBS Lett ; 589(20 Pt B): 3071-8, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26348400

ABSTRACT

In the phylogeny of plant polyamine oxidases (PAOs), clade III members from angiosperms, such as Arabidopsis thaliana PAO5 and Oryza sativa PAO1, prefer spermine and thermospermine as substrates and back-convert both of these substrates to spermidine in vitro. A clade III representative of lycophytes, SelPAO5 from Selaginella lepidophylla, also prefers spermine and thermospermine but instead back-converts these substrates to spermidine and norspermidine, respectively. This finding indicates that the clade III PAOs of lycophytes and angiosperms oxidize thermospermine at different carbon positions. We discuss the physiological significance of this difference.


Subject(s)
Oxidoreductases Acting on CH-NH Group Donors/metabolism , Plant Proteins/metabolism , Selaginellaceae/enzymology , Spermidine/analogs & derivatives , Spermine/analogs & derivatives , Chromatography, High Pressure Liquid , Dehydration , Gene Expression Regulation, Plant/drug effects , Molecular Structure , Oxidation-Reduction , Oxidoreductases Acting on CH-NH Group Donors/classification , Oxidoreductases Acting on CH-NH Group Donors/genetics , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Selaginellaceae/genetics , Selaginellaceae/metabolism , Spectrophotometry , Spermidine/chemistry , Spermidine/metabolism , Spermine/chemistry , Spermine/metabolism , Tandem Mass Spectrometry , Water/metabolism , Water/pharmacology , Polyamine Oxidase
17.
Plant Physiol ; 165(4): 1575-1590, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24906355

ABSTRACT

The major plant polyamines (PAs) are the tetraamines spermine (Spm) and thermospermine (T-Spm), the triamine spermidine, and the diamine putrescine. PA homeostasis is governed by the balance between biosynthesis and catabolism; the latter is catalyzed by polyamine oxidase (PAO). Arabidopsis (Arabidopsis thaliana) has five PAO genes, AtPAO1 to AtPAO5, and all encoded proteins have been biochemically characterized. All AtPAO enzymes function in the back-conversion of tetraamine to triamine and/or triamine to diamine, albeit with different PA specificities. Here, we demonstrate that AtPAO5 loss-of-function mutants (pao5) contain 2-fold higher T-Spm levels and exhibit delayed transition from vegetative to reproductive growth compared with that of wild-type plants. Although the wild type and pao5 are indistinguishable at the early seedling stage, externally supplied low-dose T-Spm, but not other PAs, inhibits aerial growth of pao5 mutants in a dose-dependent manner. Introduction of wild-type AtPAO5 into pao5 mutants rescues growth and reduces the T-Spm content, demonstrating that AtPAO5 is a T-Spm oxidase. Recombinant AtPAO5 catalyzes the conversion of T-Spm and Spm to triamine spermidine in vitro. AtPAO5 specificity for T-Spm in planta may be explained by coexpression with T-Spm synthase but not with Spm synthase. The pao5 mutant lacking T-Spm oxidation and the acl5 mutant lacking T-Spm synthesis both exhibit growth defects. This study indicates a crucial role for T-Spm in plant growth and development.

18.
Physiol Mol Biol Plants ; 20(2): 151-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24757319

ABSTRACT

Arabidopsis plants do not synthesize the polyamine cadaverine, a five carbon-chain diamine and structural analog of putrescine. Mutants defective in polyamine metabolic genes were exposed to exogenous cadaverine. Spermine-deficient spms mutant grew well while a T-DNA insertion mutant (pao4-1) of polyamine oxidase (PAO) 4 was severely inhibited in root growth compared to wild type (WT) or other pao loss-of-function mutants. To understand the molecular basis of this phenomenon, polyamine contents of WT, spms and pao4-1 plants treated with cadaverine were analyzed. Putrescine contents increased in all the three plants, and spermidine contents decreased in WT and pao4-1 but not in spms. Spermine contents increased in WT and pao4-1. As there were good correlations between putrescine (or spermine) contents and the degree of root growth inhibition, effects of exogenously added putrescine and spermine were examined. Spermine mimicked the original phenomenon, whereas high levels of putrescine evenly inhibited root growth, suggesting that cadaverine-induced spermine accumulation may explain the phenomenon. We also tested growth response of cadaverine-treated WT and pao4-1 plants to NaCl and found that spermine-accumulated pao4-1 plant was not NaCl tolerant. Based on the results, the effect of cadaverine on Arabidopsis growth and the role of PAO during NaCl stress are discussed.

19.
Plant Cell Physiol ; 55(6): 1110-22, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24634478

ABSTRACT

Polyamine oxidase (PAO), which requires FAD as a cofactor, functions in polyamine catabolism. Plant PAOs are classified into two groups based on their reaction modes. The terminal catabolism (TC) reaction always produces 1,3-diaminopropane (DAP), H2O2, and the respective aldehydes, while the back-conversion (BC) reaction produces spermidine (Spd) from tetraamines, spermine (Spm) and thermospermine (T-Spm) and/or putrescine from Spd, along with 3-aminopropanal and H2O2. The Oryza sativa genome contains seven PAO-encoded genes termed OsPAO1-OsPAO7. To date, we have characterized four OsPAO genes. The products of these genes, i.e. OsPAO1, OsPAO3, OsPAO4 and OsPAO5, catalyze BC-type reactions. Whereas OsPAO1 remains in the cytoplasm, the other three PAOs localize to peroxisomes. Here, we examined OsPAO7 and its gene product. OsPAO7 shows high identity to maize ZmPAO1, the best characterized plant PAO having TC-type activity. OsPAO7 seems to remain in a peripheral layer of the plant cell with the aid of its predicted signal peptide and transmembrane domain. Recombinant OsPAO7 prefers Spm and Spd as substrates, and it produces DAP from both substrates in a time-dependent manner, indicating that OsPAO7 is the first TC-type enzyme identified in O. sativa. The results clearly show that two types of PAOs co-exist in O. sativa. Furthermore, OsPAO7 is specifically expressed in anthers, with an expressional peak at the bicellular pollen stage. The physiological function of OsPAO7 in anthers is discussed.


Subject(s)
Oryza/enzymology , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Polyamines/metabolism , Aldehydes/metabolism , Diamines/metabolism , Flowers/cytology , Flowers/enzymology , Flowers/genetics , Flowers/growth & development , Genes, Reporter , Hydrogen Peroxide/metabolism , Kinetics , Organ Specificity , Oryza/cytology , Oryza/genetics , Oryza/growth & development , Oxidoreductases Acting on CH-NH Group Donors/genetics , Peroxisomes/metabolism , Phylogeny , Plant Epidermis , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Sorting Signals , Putrescine/metabolism , Spermidine/metabolism , Spermine/analogs & derivatives , Spermine/metabolism , Polyamine Oxidase
20.
Planta ; 239(5): 1101-11, 2014 May.
Article in English | MEDLINE | ID: mdl-24563249

ABSTRACT

Screening of 40,000 Arabidopsis FOX (Full-length cDNA Over-eXpressor gene hunting system) lines expressing rice full-length cDNAs brings us to identify four cadmium (Cd)-tolerant lines, one of which carried OsREX1-S as a transgene. OsREX1-S shows the highest levels of identity to Chlamydomonas reinhardtii REX1-S (referred to as CrREX1-S, in which REX denotes Required for Excision) and to yeast and human TFB5s (RNA polymerase II transcription factor B5), both of which are components of the general transcription and DNA repair factor, TFIIH. Transient expression of OsREX1-S consistently localized the protein to the nucleus of onion cells. The newly generated transgenic Arabidopsis plants expressing OsREX1-S reproducibly displayed enhanced Cd tolerance, confirming that the Cd-tolerance of the initial identified line was conferred solely by OsREX1-S expression. Furthermore, transgenic Arabidopsis plants expressing OsREX1-S exhibited ultraviolet-B (UVB) tolerance by reducing the amounts of cyclobutane pyrimidine dimers produced by UVB radiation. Moreover, those transgenic OsREX1-S Arabidopsis plants became resistant to bleomycin (an inducer of DNA strand break) and mitomycin C (DNA intercalating activity), compared to wild type. Our results indicate that OsREX1-S renders host plants tolerant to Cd, UVB radiation, bleomycin and mitomycin C through the enhanced DNA excision repair.


Subject(s)
Cadmium/toxicity , DNA Damage , DNA Repair/radiation effects , Oryza/metabolism , Plant Cells/radiation effects , Plant Proteins/metabolism , Transcription Factor TFIIH/metabolism , Ultraviolet Rays , Adaptation, Physiological/drug effects , Adaptation, Physiological/radiation effects , Amino Acid Sequence , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/radiation effects , Bleomycin , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Nucleus/radiation effects , DNA Repair/drug effects , DNA, Complementary/genetics , Humans , Mitomycin , Molecular Sequence Data , Onions/cytology , Oryza/drug effects , Oryza/radiation effects , Phenotype , Plant Cells/drug effects , Plant Proteins/chemistry , Plants, Genetically Modified , Protein Transport/drug effects , Protein Transport/radiation effects , Pyrimidine Dimers/metabolism , Saccharomyces cerevisiae/metabolism , Seedlings/drug effects , Seedlings/radiation effects , Sequence Homology, Amino Acid , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Subcellular Fractions/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...