Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 695: 149439, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38160531

ABSTRACT

Celiac disease and other types of gluten intolerance significantly affect the life quality of patients making them restrict the diet removing all food produced from wheat, rye, oat, and barley flour, and some other products. These disorders arise from protease resistance of poorly soluble proteins prolamins, contained in gluten. Enhanced proteolytic digestion of gliadins might be considered as a prospective approach for the treatment of celiac disease and other types of gluten intolerance. Herein, we tested a range of sulfated polymers (kappa-carrageenan, dextran sulfate and different polysaccharides from brown seaweeds, and a synthetic polystyrene sulfonate) for the ability to activate gliadin digestion by human digestive proteases, pepsin and trypsin. Sulfated polysaccharide from Fucus evanescens enhanced proteolytic digestion of gliadins from wheat flour and reduced its cytotoxicity on intestinal epithelial Caco-2 cell culture. Regarding the non-toxic nature of fucoidans, the results provide a basis for polymer-based drugs or additives for the symptomatic treatment of gluten intolerance.


Subject(s)
Celiac Disease , Gliadin , Humans , Gliadin/toxicity , Gliadin/metabolism , Caco-2 Cells , Flour , Sulfates , Triticum , Glutens/metabolism , Peptide Hydrolases , Polysaccharides/pharmacology , Digestion
2.
Biomed Pharmacother ; 168: 115743, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37862974

ABSTRACT

Diabetes mellitus is a serious threat to human health in both developed and developing countries. Optimal disease control requires the use of a diet and a combination of several medications, including oral hypoglycemic agents such as α-glucosidase inhibitors. Currently, the arsenal of available drugs is insufficient, which determines the relevance of studying new potent α-amylase inhibitors. We implemented the recombinant production of sea anemone derived α-amylase inhibitor magnificamide in Escherichia coli. Peptide was isolated by a combination of liquid chromatography techniques. Its folding and molecular weight was proved by 1H NMR and mass spectrometry. The Ki value of magnificamide against human pancreatic α-amylase is 3.1 nM according to Morrison equation for tight binding inhibitors. Our study of the thermodynamic characteristics of binding of magnificamide to human salivary and pancreatic α-amylases by isothermal titration calorimetry showed the presence of different binding mechanisms with Kd equal to 0.11 µM and 0.1 nM, respectively. Experiments in mice with streptozotocin-induced diabetes mimicking diabetes mellitus type 1 were used to study the efficiency of magnificamide against postprandial hyperglycemia. It was found that at a dose of 0.005 mg kg-1, magnificamide effectively blocks starch breakdown and prevents the development of postprandial hyperglycemia in T1D mice. Our results demonstrated the therapeutic potential of magnificamide for the control of postprandial hyperglycemia.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Hyperglycemia , Sea Anemones , Mice , Humans , Animals , Blood Glucose/metabolism , Sea Anemones/metabolism , alpha-Amylases , Hyperglycemia/drug therapy , Glycoside Hydrolase Inhibitors , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Type 1/drug therapy , Mucus/metabolism , Administration, Oral , alpha-Glucosidases/metabolism , Hypoglycemic Agents/adverse effects
3.
Mar Drugs ; 21(9)2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37755099

ABSTRACT

This work reports the detailed structure of fucoidan from Sargassum miticum (2SmF2) and its ability to potentiate the inhibitory effect of glycolysis inhibitor 2-deoxy-d-glucose (2-DG). 2SmF2 was shown to be sulfated and acetylated galactofucan containing a main chain of alternating residues of 1,3- and 1,4-linked α-l-fucopyranose, fucose fragments with monotonous 1,3- and 1,4-type linkages (DP up to 3), α-d-Gal-(1→3)-α-L-Fuc disaccharides, and 1,3,4- and 1,2,4-linked fucose branching points. The sulfate groups were found at positions 2 and 4 of fucose and galactose residues. 2SmF2 (up to 800 µg/mL) and 2-DG (up to 8 mM) were not cytotoxic against MDA-MB-231 and SK-MEL-28 as determined by MTS assay. In the soft agar-based model of cancer cell colony formation, fucoidan exhibited weak inhibitory activity at the concentration of 400 µg/mL. However, in combination with low non-cytotoxic concentrations of 2-DG (0.5 or 2 mM), 2SmF2 could effectively inhibit the colony formation of SK-MEL-28 and MDA-MB-231 cells and decreased the number of colonies by more than 50% compared to control at the concentration of 200 µg/mL. Our findings reveal the metabolically oriented effect of fucoidan in combination with a glycolysis inhibitor that may be beneficial for a therapy for aggressive cancers.


Subject(s)
Melanoma , Sargassum , Humans , Fucose , Polysaccharides/pharmacology
4.
Carbohydr Polym ; 318: 121128, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37479440

ABSTRACT

Fucoidans are complex fucose-containing sulfated polysaccharides with pronounced anticancer effects. Their structure-anticancer activity relationships are difficult to determine due to fucoidans' complex, often irregularities-including structures. Fucoidan-active enzymes can be used for this propose. We have investigated two new recombinant endo-fucanases FWf3 and FWf4 from the marine bacterium Wenyingzhuangia fucanilytica CZ1127T that belong to the 107 family of glycoside hydrolases (GH). Both enzymes cleaved α-(1→4)-glycosidic bonds but in fucoidan fragments with different sulfation patterns. FWf3 is the first characterized endo-fucanase that cleaves glycosidic bonds between 2O- and 2,4diO-sulfated L-fucose residues. The obtained endo-fucanases were used to produce low- and high-molecular weight fucoidan derivatives with different sulfate group locations. Low- and high-molecular weight fucoidan derivatives rich with 2,4diO-sulfation were shown to inhibit MDA-MB-231 cell colony formation more efficiently than the native fucoidan and the derivatives sulfated otherwise. Such derivatives effectively suppressed the mitochondrial membrane potential of MDA-MB-231 cells and reduced the expression of the glucose transporter 1 (GLUT1). Co-treatment of MDA-MB-231 cells with the fucoidan derivatives and oligomycin (an OXPHOS inhibitor) resulted in a synergistic anticancer effect. The data obtained demonstrate, that fucoidan and its 2,4diO-sulfated derivatives can be an effective adjunct in TNBC therapy targeting cell metabolism.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Molecular Weight , Fucose , Antineoplastic Agents/pharmacology , Glycosides
5.
Int J Biol Macromol ; 242(Pt 3): 124714, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37148937

ABSTRACT

Two pectins from the seagrass Enhalus acoroides (L.f.) Royle were isolated for the first time. Their structures and biological activities were investigated. NMR spectroscopy showed one of them to consist exclusively from the repeating →4-α-d-GalpUA→ residue (Ea1), while the other had a much more complex structure that also included 1→3-linked α-d-GalpUA residues, 1→4-linked ß-apiose residues and small amounts of galactose and rhamnose (Ea2). The pectin Ea1 showed noticeable dose-dependent immunostimulatory activity, the Ea2 fraction was less effective. Both pectins were used to create pectin-chitosan nanoparticles for the first time, and the influence of pectin/chitosan mass ratio on their size and zeta potential was investigated. Ea1 particles were slightly smaller than Ea2 particles (77 ± 16 nm vs 101 ± 12 nm) and less negatively charged (-23 mV vs -39 mV). Assessment of their thermodynamic parameters showed that only the second pectin could form nanoparticles at room temperature.


Subject(s)
Chitosan , Nanoparticles , Pectins/chemistry , Poaceae , Chitosan/pharmacology , Chitosan/chemistry , Nanoparticles/chemistry , Rhamnose
6.
Int J Mol Sci ; 25(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38203394

ABSTRACT

Sulfated polysaccharides of brown algae, fucoidans, are known for their anticoagulant properties, similar to animal heparin. Their complex and irregular structure is the main bottleneck in standardization and in defining the relationship between their structure and bioactivity. Fucoidan-active enzymes can be effective tools to overcome these problems. In the present work, we identified the gene fwf5 encoding the fucoidan-active endo-fucanase of the GH168 family in the marine bacterium Wenyingzhuangia fucanilytica CZ1127T. The biochemical characteristics of the recombinant fucanase FWf5 were investigated. Fucanase FWf5 was shown to catalyze the endo-type cleavage of the 1→4-O-glycosidic linkages between 2-O-sulfated α-L-fucose residues in fucoidans composed of the alternating 1→3- and 1→4-linked residues of sulfated α-L-fucose. This is the first report on the endo-1→4-α-L-fucanases (EC 3.2.1.212) of the GH168 family. The endo-fucanase FWf5 was used to selectively produce high- and low-molecular-weight fucoidan derivatives containing either regular alternating 2-O- and 2,4-di-O-sulfation or regular 2-O-sulfation. The polymeric 2,4-di-O-sulfated fucoidan derivative was shown to have significantly greater in vitro anticoagulant properties than 2-O-sulfated derivatives. The results have demonstrated a new type specificity among fucanases of the GH168 family and the prospects of using such enzymes to obtain standard fucoidan preparations with regular sulfation and high anticoagulant properties.


Subject(s)
Endometriosis , Fucose , Animals , Female , Humans , Catalysis , Anticoagulants/pharmacology , Polysaccharides , Sulfates
7.
Int J Biol Macromol ; 199: 86-95, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-34968550

ABSTRACT

In this study, we obtained fucoidans SFP, SHP, STP, and FVP from Sargassum fusiforme, Sargassum horneri, Sargassumthunbergii, and Fucus vesiculosus, respectively. Chitosan/fucoidan nanoparticles (Cs/F NPs) were prepared using the fucoidans mentioned above. SFP NPs and SHP NPs showed strong binding abilities to P-selectin and epithelial growth factor receptor (EGFR). Given the yields from the alga, SFP was first selected to explore the structural characteristics of the P-selectin and EGFR dual-targeting fucoidan. SFP had an estimated molecular weight of 739 kDa and was mainly composed of galactose (26.57%, mol%) and fucose (66.81%), with minor amounts of mannose (2.54%), glucosamine (0.42%), and glucose (3.66%). Galactose and fucose accounted for thevast majority. Further investigation, including methylation analysis, one- and two-dimensional nuclear magnetic resonance, and mass spectroscopy, was performed to reveal the fine structure of SFP. The results indicated that SFP mainly consisted of â†’ 3)-α-l-Fucp-(1→, →4)-α-l-Fucp-(1→, →3,4)-α-l-Fucp-(1→, →3)-ß-d-Galp-(1→, and minor â†’ 6)-ß-d-Galp-(1→, partially sulfated at the C-4 of â†’ 3)-α-l-Fucp-(1→, C-3 of â†’ 4)-α-l-Fucp-(1→, C-3 of â†’ 6)-ß-d-Galp-(1→, and C-6 of â†’ 3)-ß-d-Galp-(1 â†’ . Sulfated fuco- and galactofuco-segments formed the branches.


Subject(s)
Sargassum , ErbB Receptors , P-Selectin , Polysaccharides/chemistry , Polysaccharides/pharmacology , Receptors, Growth Factor , Sargassum/chemistry
8.
Mol Biotechnol ; 64(4): 434-446, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34724141

ABSTRACT

There is a comparative analysis of primary structures and catalytic properties of two recombinant endo-1,3-ß-D-glucanases from marine bacteria Formosa agariphila KMM 3901 and previously reported F. algae KMM 3553. Both enzymes had the same molecular mass 61 kDa, temperature optimum 45 °C, and comparable ranges of thermal stability and Km. While the set of products of laminarin hydrolysis with endo-1,3-ß-D-glucanase from F. algae was stable of the reaction with pH 4-9, the pH stability of the products of laminarin hydrolysis with endo-1,3-ß-D-glucanase from F. agariphila varied at pH 5-6 for DP 2, at pH 4 and 7-8 for DP 5, and at pH 9 for DP 3. There were differences in modes of action of these enzymes on laminarin and 4-methylumbelliferyl-ß-D-glucoside (Umb), indicating the presence of transglycosylating activity of endo-1,3-ß-D-glucanase from F. algae and its absence in endo-1,3-ß-D-glucanase from F. agariphila. While endo-1,3-ß-D-glucanase from F. algae produced transglycosylated laminarioligosaccharides with a degree of polymerization 2-10 (predominately 3-4), endo-1,3-ß-D-glucanase from F. agariphila did not catalyze transglycosylation in our lab parameters.


Subject(s)
Flavobacteriaceae , Digestion , Glucans , Substrate Specificity
9.
Int J Biol Macromol ; 185: 679-687, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34216666

ABSTRACT

Chitosan/fucoidan nanoparticles were created using two fucoidans from the Fucus evanescens algae. One of them was a regular fucoidan obtained for the first time from the alga harvested at the reproductive growth stage, using only standard extraction methods, without additional modifications. Its structure was established via NMR spectroscopy to consist of the repeating →3)-α-L-Fucp-(2,4SO3-)-(1 â†’ 4)-α-L-Fucp-(2SO3-)-(1→ fragment. Such fragment also coustituted 55% of the other fucoidan's structure, however it also included long sequences of α-L-fucopyranose residues sulfated only at C2. The nanoparticles were re-dispersed in water and the influence of fucoidan/chitosan mass ratio on the nanoparticles' size and zeta potential was investigated. 3D models of the regular fucoidan and chitosan's sections were created and their molecular docking was performed, showing that either polymer could occupy the exterior of the complex, depending on their ratio. Thermodynamic parameters of fucoidan-chitosan binding process were accessed, with the results indicating that significant conformational changes of fucoidan and chitosan molecules take place during the interaction, presumably to allow for more effective binding.


Subject(s)
Chitosan/chemistry , Fucus/chemistry , Polysaccharides/chemistry , Carbohydrate Conformation , Carbohydrate Sequence , Molecular Docking Simulation , Nanoparticles , Particle Size , Water/chemistry
10.
Carbohydr Polym ; 246: 116635, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32747270

ABSTRACT

Structure of the fucoidan from Sargassum horneri and products of its enzymatic transformation with molecular weight over 20 kDa were investigated. Fucoidan was hydrolyzed by recombinant fucoidanase FFA1 and its fraction of higher molecular weight was fractionated using anion-exchange chromatography, resulting in three sulphated polysaccharides of various molecular weight (63-138 kDa). Their structures were analyzed using NMR spectroscopy, showing the fucoidan (ShF) to be a branched polysaccharide with the backbone consisting of the repeating →3-α-l-Fucp(2SO3-)-1→4-α-l-Fucp(2,3SO3-)-1→ fragment and side chains including the α-l-Fucp-1→2-α-l-Fucp-1→ or α-l-Fucp-1→3-α-l-Fucp(4SO3-)-1→ fragments attached to the main chain at C4. The fragment F3 differing by molecular weight and side chain from other fucoidans fragments possessed the most significant anticancer and radiosensitizing activities.


Subject(s)
Antineoplastic Agents/pharmacology , Epithelial Cells/drug effects , Polysaccharides/pharmacology , Radiation-Sensitizing Agents/pharmacology , Sargassum/chemistry , Algal Proteins/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/metabolism , Biotransformation , Carbohydrate Sequence , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Dose-Response Relationship, Drug , Epithelial Cells/pathology , Epithelial Cells/radiation effects , Glycoside Hydrolases/chemistry , Humans , Hydrolysis , Molecular Weight , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Polysaccharides/metabolism , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/isolation & purification , Radiation-Sensitizing Agents/metabolism , Recombinant Proteins/chemistry , X-Rays
11.
Int J Biol Macromol ; 163: 1010-1025, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32663561

ABSTRACT

The laminarans are biologically active water-soluble polysaccharide (1,3;1,6-ß-D-glucans) of brown algae. These polysaccharides are an attractive object for research due to its relatively simple structure, low toxicity, and various biological effects. 1,3-ß-D-glucanases are an effective tool for studying the structure of laminarans, and can also be used to obtain new biologically active derivatives. This review is to outline what is currently known about laminarans and enzymes that catalyze of their transformation. We focused on information about sources, structure and properties of laminarans and 1,3-ß-D-glucanases, methods of obtaining and structural elucidation of laminarans, and biological activity of laminarans and products of their enzymatic transformation. It has an increased focus on the immunomodulating and anticancer activity of laminarans and their derivatives.


Subject(s)
Glucan 1,3-beta-Glucosidase/chemistry , Glucans/chemistry , Animals , Humans , Phaeophyceae/chemistry , Polysaccharides/chemistry , Structure-Activity Relationship
12.
Mar Drugs ; 18(2)2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32102373

ABSTRACT

A bifunctional alginate lyase (ALFA3) and mannuronate-specific alginate lyase (ALFA4) genes were found in the genome of polysaccharide-degrading marine bacterium Formosa algae KMM 3553T. They were classified to PL7 and PL6 polysaccharide lyases families and expressed in E. coli. The recombinant ALFA3 appeared to be active both on mannuronate- and guluronate-enriched alginates, as well as pure sodium mannuronate. For all substrates, optimum conditions were pH 6.0 and 35 °C; Km was 0.12 ± 0.01 mg/ml, and half-inactivation time was 30 min at 42 °C. Recombinant ALFA4 was active predominately on pure sodium mannuronate, with optimum pH 8.0 and temperature 30 °C, Km was 3.01 ± 0.05 mg/ml. It was stable up to 30 °C; half-inactivation time was 1h 40 min at 37 °C. 1H NMR analysis showed that ALFA3 degraded mannuronate and mannuronate-guluronate blocks, while ALFA4 degraded only mannuronate blocks, producing mainly disaccharides. Products of digestion of pure sodium mannuronate by ALFA3 at 200 µg/ml inhibited anchorage-independent colony formation of human melanoma cells SK-MEL-5, SK-MEL-28, and RPMI-7951 up to 17% stronger compared to native polymannuronate. This fact supports previous data and suggests that mannuronate oligosaccharides may be useful for synergic tumor therapy.


Subject(s)
Flavobacteriaceae/enzymology , Polysaccharide-Lyases/metabolism , Cloning, Molecular , Flavobacteriaceae/genetics , Flavobacteriaceae/metabolism , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/genetics , Protein Conformation
13.
Mar Drugs ; 16(11)2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30388774

ABSTRACT

Fucoidans from brown macroalgae have beneficial biomedical properties but their use as pharma products requires homogenous oligomeric products. In this study, the action of five recombinant microbial fucoidan degrading enzymes were evaluated on fucoidans from brown macroalgae: Sargassum mcclurei, Fucus evanescens, Fucus vesiculosus, Turbinaria ornata, Saccharina cichorioides, and Undaria pinnatifida. The enzymes included three endo-fucoidanases (EC 3.2.1.-GH 107), FcnA2, Fda1, and Fda2, and two unclassified endo-fucoglucuronomannan lyases, FdlA and FdlB. The oligosaccharide product profiles were assessed by carbohydrate-polyacrylamide gel electrophoresis and size exclusion chromatography. The recombinant enzymes FcnA2, Fda1, and Fda2 were unstable but were stabilised by truncation of the C-terminal end (removing up to 40% of the enzyme sequence). All five enzymes catalysed degradation of fucoidans containing α(1→4)-linked l-fucosyls. Fda2 also degraded S. cichorioides and U. pinnatifida fucoidans that have α(1→3)-linked l-fucosyls in their backbone. In the stabilised form, Fda1 also cleaved α(1→3) bonds. For the first time, we also show that several enzymes catalyse degradation of S. mcclurei galactofucan-fucoidan, known to contain α(1→4) and α(1→3) linked l-fucosyls and galactosyl-ß(1→3) bonds in the backbone. These data enhance our understanding of fucoidan degrading enzymes and their substrate preferences and may assist development of enzyme-assisted production of defined fuco-oligosaccharides from fucoidan substrates.


Subject(s)
Glycoside Hydrolases/chemistry , Oligosaccharides/chemistry , Phaeophyceae/chemistry , Polysaccharide-Lyases/chemistry , Polysaccharides/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Enzyme Assays , Enzyme Stability , Flavobacterium/chemistry , Flavobacterium/genetics , Glycoside Hydrolases/genetics , Glycoside Hydrolases/isolation & purification , Polymerization , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/isolation & purification , Protein Engineering/methods , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Substrate Specificity , Sulfates/chemistry
14.
Biomolecules ; 8(4)2018 09 21.
Article in English | MEDLINE | ID: mdl-30248971

ABSTRACT

Fucoidans belong to a structurally heterogeneous class of sulfated polysaccharides isolated from brown algae. They have a wide spectrum of biological activities. The complex structures of these polysaccharides hinder structure-activity relationships determination. Fucoidan sulfatases can make useful tools for the determination of the fine chemical structure of fucoidans. In this study, identification and preparation of two recombinant sulfatases able to catalyze the cleavage of sulfate groups from fragments of fucoidan molecules is described for the first time. Two genes of sulfatases swf1 and swf4 of the marine bacterium Wenyingzhuangia fucanilytica CZ1127T were cloned and the proteins were produced in Escherichia coli cells. Sulfatases SWF1 and SWF4 are assigned to S1_17 and S1_25 subfamilies of formylglycine-dependent enzymes of S1 family (SulfAtlas). Some molecular and biochemical characteristics of recombinant fucoidan sulfatases have been studied. Detailed specificity and catalytic features of sulfatases were determined using various sulfated fucooligosaccharides. Structures of products produced by SWF1 and SWF4 were established by nuclear magnetic resonance (NMR) spectroscopy. Based on the obtained data, the enzymes are classified as fucoidan exo-2O-sulfatase (SWF1) and fucoidan exo-3O-sulfatase (SWF4). In addition, we demonstrated the sequential action of sulfatases on 2,3-di-O-sulfated fucooligosacchrides, which indicates an exolitic degradation pathway of fucoidan by a marine bacterium W. fucanilytica CZ1127T.


Subject(s)
Polysaccharides/genetics , Sulfatases/genetics , Bacteria/chemistry , Bacteria/genetics , Escherichia coli/genetics , Polysaccharides/biosynthesis , Polysaccharides/chemistry , Structure-Activity Relationship , Substrate Specificity , Sulfatases/biosynthesis , Sulfatases/chemistry
15.
Carbohydr Polym ; 193: 189-195, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29773371

ABSTRACT

Enzymatic depolymerization of fucoidans attracts many researchers due to the opportunity of obtaining standardized fucoidan fragments. Fucoidanase catalyzes the cleavage of fucoidan from Fucus evanescens (FeF) to form low molecular weight products (LMP) and a polymeric fraction (HMP) with 50.8 kDa molecular weight and more than 50% yield. NMR spectroscopy shows that the HMP fraction has regular structure and consists of a repeating fragment [→3)-α-l-Fucp2,4OSO3--(1 → 4)-α-l-Fucp2,4OSO3--(1 → 4)-α-l-Fucp2OSO3--(1→]n. The anticancer effects of FeF fucoidan and its derivative (HMP) were studied in vitro on colon cancer cells HCT-116, HT-29, and DLD-1. The anticancer activity of the HMP fraction was found to be slightly lower than that of the FeF fucoidan. Research and practical applications of the enzyme include modification of native fucoidans for purposes of regular and easier characterized derivatives acquisition.


Subject(s)
Antineoplastic Agents/pharmacology , Fucus/chemistry , Fucus/enzymology , Hydrolases/metabolism , Polysaccharides/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Biocatalysis , Carbohydrate Conformation , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Fucus/metabolism , Humans , Hydrolases/chemistry , Polysaccharides/chemistry , Polysaccharides/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
16.
Carbohydr Polym ; 175: 654-660, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28917914

ABSTRACT

Structure and anticancer activity of fucoidan from Sargassum horneri and from products of its enzymatic transformation were investigated. A gene that encodes fucoidanase ffa1 in the marine bacteria F. algae was identified, cloned and the protein (FFA1) was produced in Escherichia coli. The mass of the gene product FFA1 is 111kDa. Sequence analysis has revealed that fucoidanase FFA1 belongs to the GH107 (CAZy) family. Recombinant fucoidanase FFA1 was used to produce fucooligosaccharides. Structure of 5 sulphated oligosaccharides with polymerization degree 4-10 was established by NMR-spectroscopy. The fucoidan extracted from S. horneri is almost pure fucan. The main chain of the fucoidan is established to consist mostly of the repeating →3-α-l-Fucp(2SO3-)-1→4-α-l-Fucp(2,3SO3-)-1→ fragment, with insertions of →3-α-l-Fucp(2,4SO3-)-1→ fragment. Unsulphated side chains with the α-l-Fucp-1→2-α-l-Fucp-1→ structure connect to the main one at the C4 of monosaccharide residue.


Subject(s)
Antineoplastic Agents/chemistry , Polysaccharides/chemistry , Sargassum/chemistry , Sulfates/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Glycoside Hydrolases/metabolism , Humans , Polysaccharides/pharmacology
17.
World J Microbiol Biotechnol ; 33(2): 40, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28120311

ABSTRACT

A specific endo-1,3-ß-D-glucanase (GFA) gene was found in genome of marine bacterium Formosa algae KMM 3553. For today this is the only characterized endo-1,3-ß-D-glucanase (EC 3.2.1.39) in Formosa genus and the only bacterial EC 3.2.1.39 GH16 endo-1,3-ß-D-glucanase with described transglycosylation activity. It was expressed in E. coli and isolated in homogeneous state. Investigating the products of polysaccharides digestion with GFA allowed to establish it's substrate specificity and classify this enzyme as glucan endo-1,3-ß-D-glucosidase (EC 3.2.1.39). The amino-acid sequence of GFA consists of 556 residues and shows sequence similarity of 45-85% to ß-1,3-glucanases of bacteria belonging to the CAZy 16th structural family of glycoside hydrolases GH16. Enzyme has molecular weight 61 kDa, exhibits maximum of catalytic activity at 45 °C, pH 5.5. Half-life period at 45 °Ð¡ is 20 min, complete inactivation happens at 55 °C within 10 min. Km for hydrolysis of laminarin is 0.388 mM. GFA glucanase from marine bacteria F. algae is one of rare enzymes capable to catalyze reactions of transglycosylation. It catalyzed transfer of glyconic part of substrate molecule on methyl-ß-D-xylopyranoside, glycerol and methyl-α-D-glucopyranoside. The enzyme can be used in structure determination of ß-1,3-glucans (or mixed 1,3;1,4- and 1,3;1,6-ß-D-glucans) and enzymatic synthesis of new carbohydrate-containing compounds.


Subject(s)
Flavobacterium/enzymology , Glucan Endo-1,3-beta-D-Glucosidase/genetics , Glucan Endo-1,3-beta-D-Glucosidase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Flavobacterium/genetics , Glycosylation , Hydrolysis , Molecular Weight , Substrate Specificity
18.
Glycobiology ; 27(3): 254-263, 2017 03 04.
Article in English | MEDLINE | ID: mdl-28031251

ABSTRACT

A gene that encodes fucoidanase ffa2 in the marine bacterium Formosa algae strain KMM 3553T was cloned, and the protein (FFA2) was produced in Escherichia coli. Recombinant fucoidanase FFA2 was purified, and the biochemical properties of this enzyme were studied. The amino acid sequence of FFA2 showed 57% identity with known fucoidanase FcnA from Mariniflexile fucanivorans. The mass of the gene product FFA2 is 101.2 kDa (918 amino acid residues). Sequence analysis has revealed that fucoidanase FFA2 belongs to the GH107 (CAZy) family. Detailed substrate specificity was studied by using fucoidans from brown seaweeds as well as synthetic fucooligosaccharide with distinct structures. Fucoidanase FFA2 catalyzes the cleavage of (1→4)-α-glycosidic bonds in the fucoidan from Fucus evanescens within a structural fragment (→3)-α-l-Fucp2S-(1→4)-α-l-Fucp2S-(1→)n but not in a fragment (→3)-α-l-Fucp2S,4S-(1→4)-α-l-Fucp2S-(1→)n. Using synthetic di-, tetra- and octasaccharides built up of the alternative (1→4)- and (1→3)-linked α-l-Fucp2S units, the difference in substrate specificity and in the rate of enzymatic selectivity was investigated. Nonsulfated and persulfated synthetic oligosaccharides were not transformed by the enzyme. Therefore, FFA2 was specified as poly[(1→4)-α-l-fucoside-2-sulfate] glycanohydrolase. This enzyme could be used for the modification of natural fucoidans to obtain more regular and easier characterized derivatives useful for research and practical applications.


Subject(s)
Flavobacteriaceae/enzymology , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Polysaccharides/metabolism , Cloning, Molecular , Gene Expression Regulation, Enzymologic , Glycoside Hydrolases/metabolism , Glycosides/chemistry , Glycosides/metabolism , Oligosaccharides/chemistry , Oligosaccharides/genetics , Polysaccharides/chemistry , Protein Conformation , Substrate Specificity
19.
Glycobiology ; 26(1): 3-12, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26347522

ABSTRACT

In recent years, the research of fucoidans has steadily increased. The interest in these substances is due to their various biological activities. Despite a wide range of biological activity and the lack of oral toxicity, fucoidans remain relatively unexploited as a source of medicines because of their heterogeneity. Enzymes that degrade polyanionic polysaccharides are widely used for establishing their structures and structure-activity relationships. Sometimes, to obtain preparations of polysaccharides with standard characteristics, for example, medicines and food supplements, enzymatic treatment can be also applied. Only a few sources of enzymes with fucoidanase activity have been described, and only a few studies regarding the isolation and characterization of fucoidanases have been performed. The data on the specificity of fucoidanases: the type of cleaved glycoside bond, the relation between catalytic activity and the degree of substrate sulfation are scarce. The review summarizes achievements in the research of fucoidanases, mechanisms of enzymatic degradation of fucoidans, as well as of structures of sulfated fucooligosaccharides obtained under the action of fucoidanases.


Subject(s)
Glycoside Hydrolases/metabolism , Polysaccharides/metabolism , Animals , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/classification , Substrate Specificity
20.
Glycobiology ; 26(5): 449-59, 2016 May.
Article in English | MEDLINE | ID: mdl-26681734

ABSTRACT

A fucosylated chondroitin sulfate (FCS) was isolated from the body wall of Pacific sea cucumber Cucumaria japonicaby extraction in the presence of papain followed by Cetavlon precipitation and anion-exchange chromatography. FCS was shown to contain D-GalNAc, D-GlcA, L-Fuc and sulfate in molar proportions of about 1:1:1:4.5. Structure of FCS was elucidated using NMR spectroscopy and methylation analysis of the native polysaccharide and products of its desulfation and carboxyl reduction. The polysaccharide was shown to contain a typical chondroitin core → 3)-ß-D-GalNAc-(1 → 4)-ß-D-GlcA-(1 →. Sulfate groups in this core occupy O-4 and the majority of O-6 of GalNAc. Fucosyl branches are represented by 3,4- and 2,4-disulfated units in a ratio of 4:1 and are linked to O-3 of GlcA. In addition, ∼ 33% of GlcA are 3-O-sulfated, and hence, the presence of short fucooligosaccharide chains side by side with monofucosyl branches cannot be excluded. FCS was shown to inhibit platelets aggregation in vitro mediated by collagen and ristocetin, but not adenosine diphosphate, and demonstrated significant anticoagulant activity, which is connected with its ability to enhance inhibition of thrombin and factor Xa by antithrombin III, as well as to influence von Willebrand factor activity. The latest property significantly distinguished FCS from low-molecular-weight heparin.


Subject(s)
Blood Platelets/metabolism , Chondroitin Sulfates , Cucumaria/chemistry , Fucose , Platelet Aggregation/drug effects , Animals , Carbohydrate Conformation , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/pharmacology , Fucose/chemistry , Fucose/pharmacology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...