Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 15: 906, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25326207

ABSTRACT

BACKGROUND: The human pathogen Trichomonas vaginalis is a parabasalian flagellate that is estimated to infect 3% of the world's population annually. With a 160 megabase genome and up to 60,000 genes residing in six chromosomes, the parasite has the largest genome among sequenced protists. Although it is thought that the genome size and unusual large coding capacity is owed to genome duplication events, the exact reason and its consequences are less well studied. RESULTS: Among transcriptome data we found thousands of instances, in which reads mapped onto genomic loci not annotated as genes, some reaching up to several kilobases in length. At first sight these appear to represent long non-coding RNAs (lncRNAs), however, about half of these lncRNAs have significant sequence similarities to genomic loci annotated as protein-coding genes. This provides evidence for the transcription of hundreds of pseudogenes in the parasite. Conventional lncRNAs and pseudogenes are expressed in Trichomonas through their own transcription start sites and independently from flanking genes in Trichomonas. Expression of several representative lncRNAs was verified through reverse-transcriptase PCR in different T. vaginalis strains and case studies exclude the use of alternative start codons or stop codon suppression for the genes analysed. CONCLUSION: Our results demonstrate that T. vaginalis expresses thousands of intergenic loci, including numerous transcribed pseudogenes. In contrast to yeast these are expressed independently from neighbouring genes. Our results furthermore illustrate the effect genome duplication events can have on the transcriptome of a protist. The parasite's genome is in a steady state of changing and we hypothesize that the numerous lncRNAs could offer a large pool for potential innovation from which novel proteins or regulatory RNA units could evolve.


Subject(s)
Pseudogenes , RNA, Long Noncoding/genetics , RNA, Protozoan/genetics , Trichomonas vaginalis/genetics , Gene Duplication , Gene Expression Profiling , Sequence Analysis, RNA
2.
Mol Biochem Parasitol ; 198(2): 92-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25677793

ABSTRACT

The human pathogen Trichomonas vaginalis is a parasitic protist. It is a representative of the eukaryotic supergroup Excavata that includes a few other protist parasites such as Leishmania, Trypanosoma and Giardia. T. vaginalis is the agent of trichomoniasis and in the US alone, one in 30 women tests positive for this parasite. The disease is easily treated with metronidazole in most cases, but resistant strains are on the rise. The biology of Trichomonas is remarkable: it includes for example the biggest protist genome currently sequenced, the expression of about 30,000 protein-encoding genes (and thousands of lncRNAs and pseudogenes), anaerobic hydrogenosomes, rapid morphogenesis during infection, the secretion of exosomes, the manipulation of the vaginal microbiota through phagocytosis and a rich strain-dependent diversity. Here we provide an overview of Trichomonas biology with a focus on its relevance for pathogenicity and summarise the most recent advances. With some respect this parasite offers the opportunity to serve as a model system to study certain aspects of cell and genome biology, but tackling the complex biology of T. vaginalis is also important to better understand the effects that accompany infection and direct symptoms.


Subject(s)
Host-Pathogen Interactions , Reproductive Tract Infections/parasitology , Trichomonas Infections/parasitology , Trichomonas vaginalis/physiology , Humans
3.
Int J Parasitol ; 43(9): 707-19, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23688716

ABSTRACT

The human pathogen Trichomonas vaginalis has the largest protozoan genome known, potentially encoding approximately 60,000 proteins. To what degree these genes are expressed is not well known and only a few key transcription factors and promoter domains have been identified. To shed light on the expression capacity of the parasite and transcriptional regulation during phase transitions, we deep sequenced the transcriptomes of the protozoan during two environmental stimuli of the early infection process: exposure to oxygen and contact with vaginal epithelial cells. Eleven 3' fragment libraries from different time points after exposure to oxygen only and in combination with human tissue were sequenced, generating more than 150 million reads which mapped onto 33,157 protein coding genes in total and a core set of more than 20,000 genes represented within all libraries. The data uncover gene family expression regulation in this parasite and give evidence for a concentrated response to the individual stimuli. Oxygen stress primarily reveals the parasite's strategies to deal with oxygen radicals. The exposure of oxygen-adapted parasites to human epithelial cells primarily induces cytoskeletal rearrangement and proliferation, reflecting the rapid morphological transition from spindle shaped flagellates to tissue-feeding and actively dividing amoeboids.


Subject(s)
Epithelial Cells/parasitology , Gene Expression Regulation/physiology , Genome, Protozoan , Trichomonas vaginalis/genetics , Trichomonas vaginalis/physiology , Vagina/cytology , Cells, Cultured , Female , Humans , Multigene Family , Oxidative Stress , Transcriptome , Trichomonas vaginalis/cytology
4.
Cell Microbiol ; 15(10): 1707-21, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23530917

ABSTRACT

Trichomonas vaginalis is the most widespread non-viral pathogen of the human urogenital tract, infecting ∼ 3% of the world's population annually. At the onset of infection the protist changes morphology within minutes: the flagellated free-swimming cell converts into the amoeboid-adherent stage. The molecular machinery of this process is not well studied, but is thought to involve actin reorganization. We have characterized amoeboid transition, focusing in particular on TvFim1, the only expressed protein of the fimbrin family in Trichomonas. Addition of TvFim1 to actin polymerization assays increases the speed of actin filament assembly and results in bundling of F-actin in a parallel and anti-parallel manner. Upon contact with vaginal epithelial cells, the otherwise diffuse localization of actin and TvFim1 changes dramatically. In the amoeboid TvFim1 associates with fibrous actin bundles and concentrates at protrusive structures opposing the trailing ends of the gliding amoeboid form and rapidly redistributes together with actin to form distinct clusters. Live cell imaging demonstrates that Trichomonas amoeboid stages do not just adhere to host tissue, rather they actively migrate across human epithelial cells. They do so in a concerted manner, with an average speed of 20 µm min(-1) and often using their flagella and apical tip as the leading edge.


Subject(s)
Actins/metabolism , Flagella/physiology , Locomotion , Membrane Glycoproteins/metabolism , Microfilament Proteins/metabolism , Trichomonas vaginalis/physiology , Cell Adhesion , Cell Line , Epithelial Cells/parasitology , Gene Expression Profiling , Humans , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Microfilament Proteins/chemistry , Microfilament Proteins/genetics , Models, Molecular , Protein Conformation , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL
...