Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Med Food ; 25(3): 230-238, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35085010

ABSTRACT

Obesity may cause behavioral alterations, while maternal obesity can contribute to metabolic disorders in subsequent generations. The effect of ß-glucan-rich Pleurotus pulmonarius (ßgPp) was investigated on mouse neurobehavior and hippocampus and its offspring's hippocampus development. Female ICR mice were fed with normal diet (ND), ND with ßgPp, high-fat diet (HFD), or HFD with ßgPp for 3 months followed by behavioral test and mating. Immunohistochemistry for the expression of neuronal nuclear protein (NeuN) and ionized calcium binding adaptor molecule-1 (Iba-1) in the hippocampus was carried out. ßgPp significantly enhanced short-term object recognition memory in HFD-fed mice. ßgPp also ameliorated the histological alterations and neuronal loss and increased Iba-1-positive microglia in the hippocampus regions of HFD-fed mice and their male offspring. These findings demonstrated that ßgPp supplementation attenuated the effects of HFD on object recognition memory and the alterations on the hippocampal regions of maternal mice and their male offspring.


Subject(s)
Pleurotus , beta-Glucans , Animals , Diet, High-Fat/adverse effects , Female , Hippocampus/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Pregnancy , beta-Glucans/pharmacology
2.
Int J Med Mushrooms ; 22(12): 1171-1181, 2020.
Article in English | MEDLINE | ID: mdl-33463934

ABSTRACT

Pleurotus eryngii (king oyster mushroom) is a renowned culinary mushroom with various medicinal properties that may be beneficial for health maintenance and disease prevention. However, its effect on the nervous system remains elusive. In this study, hot water (PE-HWA) and ethanol (PE-ETH) extracts of P. eryngii were investigated and compared for their neuroprotective, anti-inflammatory, and neurite outgrowth activities in vitro. Based on the results, both extracts up to 400 µg/mL were nontoxic to PC12 cells and BV2 microglia (p > 0.05). Treatment with 250 µM hydrogen peroxide (H2O2) markedly (p < 0.0001) reduced the PC12 cell viability to 67.74 ± 6.47%. Coincubation with 200 µg/mL and 400 µg/mL of PE-ETH dose-dependently increased the cell viability to 85.34 ± 1.91% (p < 0.001) and 98.37 ± 6.42% (p < 0.0001) respectively, while PE-HWA showed no activity. Nitric oxide (NO) released by BV2 microglia was notably (p < 0.0001) increased by 1 µg/mL lipopolysaccharides (LPS) from 7.46 ± 0.73 µM to 80.00 ± 3.78 µM indicating an inflammatory reaction. However, coincubation with 200 and 400 µg/mL of PE-ETH significantly (p < 0.0001) reduced the NO level to 58.57 ± 6.19 µM and 52.86 ± 3.43 µM respectively, while PE-HWA was noneffective. PE-ETH and PE-HWA at 40 µg/mL significantly increased the neurite-bearing cells from 4.70 ± 3.36% to 13.12 ± 2.82% (p < 0.01) and 20.93 ± 5.37% (p < 0.0001) respectively. Pleurotus eryngii, particularly the ethanol extract (PE-ETH) and its potentially bioactive compounds, could be explored as a neurohealth promoting agent, due to its collective neuroprotective, anti-inflammatory, and neurite outgrowth activities.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Neurites/drug effects , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Pleurotus/chemistry , Animals , Anti-Inflammatory Agents/isolation & purification , Hydrogen Peroxide/toxicity , Microglia/drug effects , Neurites/physiology , Neuronal Outgrowth/drug effects , Neuroprotective Agents/isolation & purification , PC12 Cells , Plant Extracts/isolation & purification , Rats
3.
Int J Mol Sci ; 20(20)2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615073

ABSTRACT

Ageing is an inevitable fundamental process for people and is their greatest risk factor for neurodegenerative disease. The ageing processes bring changes in cells that can drive the organisms to experience loss of nutrient sensing, disrupted cellular functions, increased oxidative stress, loss of cellular homeostasis, genomic instability, accumulation of misfolded protein, impaired cellular defenses and telomere shortening. Perturbation of these vital cellular processes in neuronal cells can lead to life threatening neurological disorders like Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Lewy body dementia, etc. Alzheimer's Disease is the most frequent cause of deaths in the elderly population. Various therapeutic molecules have been designed to overcome the social, economic and health care burden caused by Alzheimer's Disease. Almost all the chemical compounds in clinical practice have been found to treat symptoms only limiting them to palliative care. The reason behind such imperfect drugs may result from the inefficiencies of the current drugs to target the cause of the disease. Here, we review the potential role of antioxidant polyphenolic compounds that could possibly be the most effective preventative strategy against Alzheimer's Disease.


Subject(s)
Alzheimer Disease/diet therapy , Antioxidants/therapeutic use , Huntington Disease/diet therapy , Parkinson Disease/diet therapy , Polyphenols/therapeutic use , Aged , Alzheimer Disease/metabolism , Antioxidants/metabolism , Homeostasis , Humans , Huntington Disease/metabolism , Neurons/drug effects , Oxidative Stress/drug effects , Parkinson Disease/metabolism , Polyphenols/metabolism , Reactive Oxygen Species/metabolism
4.
Antioxidants (Basel) ; 8(8)2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31374912

ABSTRACT

Oxidative stress and inflammation in neuron-glia system are key factors in the pathogenesis of neurodegenerative diseases. As synthetic drugs may cause side effects, natural products have gained recognition for the prevention or management of diseases. In this study, hot water (HE-HWA) and ethanolic (HE-ETH) extracts of the basidiocarps of Hericium erinaceus mushroom were investigated for their neuroprotective and anti-inflammatory activities against hydrogen peroxide (H2O2)-induced neurotoxicity in HT22 mouse hippocampal neurons and lipopolysaccharide (LPS)-induced BV2 microglial activation respectively. HE-ETH showed potent neuroprotective activity by significantly (p < 0.0001) increasing the viability of H2O2-treated neurons. This was accompanied by significant reduction in reactive oxygen species (ROS) (p < 0.05) and improvement of the antioxidant enzyme catalase (CAT) (p < 0.05) and glutathione (GSH) content (p < 0.01). Besides, HE-ETH significantly improved mitochondrial membrane potential (MMP) (p < 0.05) and ATP production (p < 0.0001) while reducing mitochondrial toxicity (p < 0.001), Bcl-2-associated X (Bax) gene expression (p < 0.05) and nuclear apoptosis (p < 0.0001). However, gene expression of Nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) were unaffected (p > 0.05). HE-ETH also significantly (p < 0.0001) reduced nitric oxide (NO) level in LPS-treated BV2 indicating an anti-inflammatory activity in the microglia. These findings demonstrated HE-ETH maybe a potential neuroprotective and anti-inflammatory agent in neuron-glia environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...