Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(14): 147204, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34652199

ABSTRACT

Organic salts represent an ideal experimental playground for studying the interplay between magnetic and charge degrees of freedom, which has culminated in the discovery of several spin-liquid candidates such as κ-(ET)_{2}Cu_{2}(CN)_{3} (κ-Cu). Recent theoretical studies indicate the possibility of chiral spin liquids stabilized by ring exchange, but the parent states with chiral magnetic order have not been observed in this material family. In this Letter, we discuss the properties of the recently synthesized κ-(BETS)_{2}Mn[N(CN)_{2}]_{3} (κ-Mn). Based on analysis of specific heat, magnetic torque, and NMR measurements combined with ab initio calculations, we identify a spin-vortex crystal order. These observations definitively confirm the importance of ring exchange in these materials and support the proposed chiral spin-liquid scenario for triangular lattice organics.

2.
Inorg Chem ; 57(5): 2386-2389, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29465234

ABSTRACT

We report the first highly conducting single-molecule magnet, (BEDO)4[ReF6]·6H2O [1; BEDO = bis(ethylenedioxo)tetrathiafulvalene], whose conductivity and single-molecule magnetism coexist in the same temperature range. The compound was synthesized by BEDO electrocrystallization in the presence of (Ph4P)2[ReF6]·2H2O and characterized by crystallography and measurements of the conductivity and alternating-current magnetic susceptibility.

3.
J Phys Condens Matter ; 28(27): 275702, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27214663

ABSTRACT

de Haas-van Alphen oscillations of the organic metal κ-(ET)2Cu(SCN)2 have been measured up to 55 T at liquid helium temperatures. The Fermi surface of this charge transfer salt is a textbook example of a linear chain of orbits coupled by magnetic breakdown. Accordingly, the oscillation spectrum is composed of linear combinations of the frequencies linked to the α and magnetic breakdown-induced ß orbits. The field and temperature dependence of all the observed Fourier components, in particular the 'forbidden frequency' [Formula: see text] which cannot correspond to a classical orbit, are quantitatively accounted for by analytical calculations based on a second order development of the free energy, i.e. beyond the first order Lifshitz-Kosevich formula.

4.
J Am Chem Soc ; 130(23): 7238-40, 2008 Jun 11.
Article in English | MEDLINE | ID: mdl-18481859

ABSTRACT

Crystals of the bis(ethylenedithio)tetraselenafulvalene (BETS) radical cation salt with dicyanamidomanganate(II) anion, kappa-(BETS)2Mn[N(CN)2]3, were synthesized, which combine conducting and magnetic properties at ambient pressure and are superconducting (Tc approximately/= 5 K) at a moderate pressure of 0.3 kbar.

5.
Acta Crystallogr B ; 58(Pt 3 Pt 2): 471-6, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12037335

ABSTRACT

A new room-temperature metallic modification of the well known radical cation salt (ET)(2)[KHg(SCN)(4)] has been prepared by electrochemical oxidation of ET. Its crystal and electronic structure have been examined at 110 K. The salt has a layered structure in which the conducting layers are characterized by the delta-type packing.

6.
Acta Crystallogr B ; 58(Pt 1): 148-52, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11818663

ABSTRACT

The radical cation salt ET(NCS)0.77 [bis(ethylenedithio)tetrathiafulvalene thiocyanate (1/0.77)] has been prepared for the first time by electrocrystallization and its crystal and electronic structure at 110 K was investigated. The unit-cell dimensions are orthorhombic, a = 6.638 (1), b = 8.309 (2), c = 28.776 (6) A, V = 1587.1 (6) A3, space group Pbcm, Z = 4. The compound has a layered structure. The ET radical cations of the conducting cationic layer build stacks. In the anionic layer the thiocyanate groups form polymeric chains where they are oriented in a 'head-to-tail' mode. The structure has short intermolecular contacts of the cation-cation, anion-anion and cation-anion types, which leads to the formation of a three-dimensional structure of intermolecular interactions. This phenomenon is very rare in molecular conductors. Tight binding band structure calculations suggest, however, that the interlayer interactions through the anions are weak and that the incomplete occupation of the anion sites is the reason for the activated conductivity of the salt.

SELECTION OF CITATIONS
SEARCH DETAIL
...