Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Small Methods ; : e2301582, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697918

ABSTRACT

This work presents quantitative investigations into the relationships between lithium dendrite growth in the defects of Li6PS5Cl (LPSCl) solid electrolyte (SE), crack nucleation and propagation in the SE, and the associated mechanical forces driving these dendrites and cracks. Two different growth modes for lithium dendrites are identified by ex situ scanning electron microscopy (SEM) observation: longitudinal cracking inside pores in the SE and lateral penetration along boundaries of the SE particles. These in situ TEM tests reveal that concentrated Li plating in a nano-sized defect on the LPSCl surface will lead to the nucleation and propagation of cracks into the LPSCl under a stress much smaller than the expected mechanical strength of the LPSCl material. This unexpected mechanical degradation is caused by a reduction in the mechanical strength of LPSCl during electrochemical charge/discharge cycling, resulting from a disorder in the crystal structure of LPSCl as revealed by DFT simulations. Due to this mechanical degradation of LPSCl, the threshold force necessary to initiate crack growth is much lower than the previously expected force to drive dendrite growth.

2.
ACS Nano ; 18(6): 4811-4821, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38306703

ABSTRACT

Layered Ta2M3Te5 (M = Pd, Ni) has emerged as a platform to study 2D topological insulators, which have exotic properties such as spin-momentum locking and the presence of Dirac fermions for use in conventional and quantum-based electronics. In particular, Ta2Ni3Te5 has been shown to have superconductivity under pressure and is predicted to have second-order topology. Despite being an interesting material with fascinating physics, the detailed crystalline and phononic properties of this material are still unknown. In this study, we use transmission electron microscopy (TEM) and polarized Raman spectroscopy (PRS) to reveal the anisotropic properties of exfoliated few-layer Ta2Ni3Te5. An electron diffraction and TEM study reveals structural anisotropy in the material, with a preferential crystal orientation along the [010] direction. Through Raman spectroscopy, we discovered 15 vibrational modes, 3 of which are ultralow-frequency modes, which show anisotropic response with sample orientation varying with the polarization of the incident beam. Using angle-resolved PRS, we assigned the vibrational symmetries of 11 modes to Ag and two modes to B3g. We also found that linear dichroism plays a role in understanding the Raman signature of this material, which requires the use of complex elements in the Raman tensors. The anisotropy of the Raman scattering also depends on the excitation energies. Our observations reveal the anisotropic nature of Ta2Ni3Te5, establish a quick and nondestructive Raman fingerprint for determining sample orientation, and represent a significant advance in the fundamental understanding of the two-dimensional topological insulator (2DTI) Ta2Ni3Te5 material.

3.
J Power Sources ; 527: 1-11, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35582347

ABSTRACT

In this study, a novel molybdenum disulfide (MoS2) nano-carbon (NC) coated cathode was developed for hydrogen production in a microbial electrolysis cell (MEC), while treating simulated urine with 2-6 times dilution (conductivity <20 mS cm-1). MoS2 nanoparticles were electrodeposited on the NC coated cathodes at -100, -150 and -200 µA cm-2 and their performances were evaluated in the MEC. The chronopotentiometry (CP) tests showed the improved catalytic activity of MoS2-NC cathodes with much lower cathode overpotential than non-MoS2 coated electrodes. The MoS2-NC200 cathode, electrodeposited at -200 µA cm-2, showed the maximum hydrogen production rate of 0.152 ± 0.002 m3 H2 m-2 d-1 at 0.9V of Eap, which is comparable to the previously reported Pt electrodes. It was found that high solution conductivity over 20 mS cm-1 (>600 mg L-1 NH3-N) can adversely affect the biofilm architecture and the bacterial activity at the anode of the MEC. Exoelectrogenic bacteria for this system at the anode were identified as Tissierella (Clostridia) and Bacteroidetes taxa. Maximum ammonia-nitrogen (NH3-N) and phosphorus (PO4 3--P) removal were 68.7 and 98.6%, respectively. This study showed that the newly fabricated MoS2-NC cathode can be a cost-effective alternative to the Pt cathode for renewable bioelectrochemical hydrogen production from urine.

4.
J Am Chem Soc ; 143(30): 11595-11601, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34269572

ABSTRACT

Fine-tuning the exposed active sites of platinum group metal (PGM)-based materials is an efficient way to improve their electrocatalytic performance toward large-scale applications in renewable energy devices such as Zn-air batteries (ZABs). However, traditional synthetic methods trade off durability for the high activity of PGM-based catalysts. Herein, a novel dynamic CO2-bubble template (DCBT) approach was established to electrochemically fine-tuning the exposed Pt active sites in PtFeNi (PFN) porous films (PFs). Particularly, CO2 bubbles were intentionally generated as gas-phase templates by methanol electrooxidation. The generation, adsorption, residing, and desorption of CO2 bubbles on the surface of PFN alloys were explored and controlled by adjusting the frequency of applied triangular-wave voltage. Thereby, the surface morphology and Pt exposure of PFN PFs were controllably regulated by tuning the surface coverage of CO2 bubbles. Consequently, the Pt1.1%Fe8.8%Ni PF with homogeneous nanoporous structure and sufficiently exposed Pt active sites was obtained, showing preeminent activities with a half-wave potential (E1/2) of 0.87 V and onset overpotential (ηonset) of 288 mV at 10 mA cm-2 for oxygen reduction and evolution reactions (ORR and OER), respectively, at an ultralow Pt loading of 0.01 mg cm-2. When tested in ZABs, a high power density of 175.0 mW cm-2 and a narrow voltage gap of 0.64 V were achieved for the long cycling tests over 500 h (750 cycles), indicating that the proposed approach can efficiently improve the activity of PGM catalysts by fine-tuning the microstructure without compromising the durability.

5.
J Phys Chem B ; 125(28): 7911-7918, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34232656

ABSTRACT

H-aggregates of π-conjugated dyes are an ordered supramolecular structure. However, the non-fluorescence behavior of H-aggregates greatly limits their potential applications. In this paper, we report the formation of fluorescent H-aggregates with vesicular and tubular morphologies by the self-assembly of 3,3'-diethylthiacarbocyanine iodide (DiSC2(3)) in ammonia/methanol mixtures. The transition from H-aggregate vesicles to H-aggregate tubes can be achieved by increasing the volume fraction of methanol in the mixtures. H-aggregate vesicles and tubes show two blue-shifted absorption bands and strong fluorescence, which result from the inclined arrangement of DiSC2(3) molecules. Furthermore, light-harvesting complexes are formed by adding dopamine (DA)-quinone (acceptor) in synthetic urine with H-aggregate vesicles or tubes. Our results show that H-aggregate tubes are more efficient than H-aggregate vesicles in transferring excited electrons to DA-quinone acceptors.


Subject(s)
Coloring Agents , Quinolines , Spectrometry, Fluorescence
6.
Gan To Kagaku Ryoho ; 48(5): 693-695, 2021 May.
Article in Japanese | MEDLINE | ID: mdl-34006716

ABSTRACT

A 67‒year‒old woman, who had been receiving chemotherapy for 16 years because of recurrences of breast cancer, suffered from arthrosis in the left hip joint. A total hip joint replacement was needed. The central venous catheter port was removed a month before the operation. The culture of the catheter revealed Staphylococcus aureus. During the operation, a gram‒positive coccus was detected in the synovium of the hip joint. Therefore, the replacement was terminated, and an irrigation was performed. Two months later, a replacement of the hip joint was successfully performed after an antibacterial therapy. The patient died of the cancer 1 and a half years later. Septic arthritis secondary to catheter infection is a disease to consider in patients with long‒term chemotherapy.


Subject(s)
Arthritis, Infectious , Breast Neoplasms , Staphylococcal Infections , Aged , Arthritis, Infectious/drug therapy , Arthritis, Infectious/etiology , Breast Neoplasms/drug therapy , Female , Hip Joint , Humans , Neoplasm Recurrence, Local , Staphylococcal Infections/drug therapy
7.
ACS Appl Mater Interfaces ; 13(8): 9794-9803, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33596037

ABSTRACT

Polymer-derived ceramics demonstrate great potential as lithium-ion battery anode materials with good cycling stability and large capacity. SiCNO ceramic nanoparticles are produced by the pyrolysis of polysilazane nanoparticles that are synthesized via an oil-in-oil emulsion crosslinking and used as anode materials. The SiCNO nanoparticles have an average particle size of around 9 nm and contain graphitic carbon and Si3N4 and SiO2 domains. Composite anodes are produced by mixing different concentrations of SiCNO nanoparticles, edge-functionalized graphene oxide, polyvinylidenefluoride, and carbon black Super P. The electrochemical behavior of the anode is investigated to evaluate the Li-ion storage performance of the composite anode and understand the mechanism of Li-ion storage. The lithiation of SiCNO is observed at ∼0.385 V versus Li/Li+. The anode has a large capacity of 705 mA h g-1 after 350 cycles at a current density of 0.1 A g-1 and shows an excellent cyclic stability with a capacity decay of 0.049 mA h g-1 (0.0097%) per cycle. SiCNO nanoparticles provide a large specific area that is beneficial to Li+ storage and cyclic stability. In situ transmission electron microscopy analysis demonstrates that the SiCNO nanoparticles exhibit extraordinary structural stability with 9.36% linear expansion in the lithiation process. The X-ray diffraction and X-ray photoelectron spectroscopy investigation of the working electrode before and after cycling suggests that Li+ was stored through two pathways in SiCNO lithiation: (a) Li-ion intercalation of graphitic carbon in free carbon domains and (b) lithiation of the SiO2 and Si3N4 domains through a two-stage process.

8.
J Power Sources ; 4842021 Feb 01.
Article in English | MEDLINE | ID: mdl-33627935

ABSTRACT

Microbial fuel cells (MFCs) have recently been applied to generate electricity from oily wastewater. Although MFCs that utilize microalgae to provide a self-supporting oxygen (O2) supply at the cathode have been well discussed, those with microalgae at the anode as an active biomass for treating wastewater and producing electrons are still poorly studied and understood. Here, we demonstrated a bilgewater treatment using single- and double-chamber microalgal fuel cells (SMAFC and DMAFC) capable of generating energy with a novel microalgal strain (Chlorella sorokiniana) that was initially isolated from oily wastewater. Compared to previous MFC studies using green algae, relatively high voltage output (151.3-160.1 mV, 71.3-83.4 mV m-2 of power density) was observed in the SMAFC under O2 controlled systems (i.e., acetate addition or light/dark cycle). It was assumed that, under the O2 depletion, alternative electron acceptors such as bicarbonate may be utilized for power generation. A DMAFC showed better power density (up to 23.9%) compared to the SMAFC due to the separated cathode chamber which fully utilizes O2 as an electron acceptor. Both SMAFC and DMAFC removed 67.2-77.4% of soluble chemical oxygen demands (SCOD) from the synthetic bilgewater. This study demonstrates that the application of algae-based MFCs is a feasible strategy to treat oil-in-water emulsion while generating electricity.

9.
Microsc Microanal ; 27(2): 250-256, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33588959

ABSTRACT

This in situ transmission electron microscopy work presents a nanoscale characterization of the microstructural evolution in 3D-printed Inconel 718 (IN718) while exposed to elevated temperature and an associated change in the mechanical property under tensile loading. Here, we utilized a specially designed specimen shape that enables tensile testing of nano-sized thin films without off-plane deformations. Additionally, it allows a seamless transition from the in situ heating to tensile experiment using the same specimen, which enables a direct correlation of the microstructure and the mechanical property of the sample. The method was successfully used to observe the residual stress relaxation and the formation of incoherent γ' precipitates when temperature was increased to 700°C. The subsequent in situ tensile test revealed that the exposure of the as-printed IN718 to a high temperature without full heat treatment (solutionizing and double aging) leads to loss of ductility.

10.
Nat Commun ; 12(1): 237, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33431888

ABSTRACT

Metal anode instability, including dendrite growth, metal corrosion, and hetero-ions interference, occurring at the electrolyte/electrode interface of aqueous batteries, are among the most critical issues hindering their widespread use in energy storage. Herein, a universal strategy is proposed to overcome the anode instability issues by rationally designing alloyed materials, using Zn-M alloys as model systems (M = Mn and other transition metals). An in-situ optical visualization coupled with finite element analysis is utilized to mimic actual electrochemical environments analogous to the actual aqueous batteries and analyze the complex electrochemical behaviors. The Zn-Mn alloy anodes achieved stability over thousands of cycles even under harsh electrochemical conditions, including testing in seawater-based aqueous electrolytes and using a high current density of 80 mA cm-2. The proposed design strategy and the in-situ visualization protocol for the observation of dendrite growth set up a new milestone in developing durable electrodes for aqueous batteries and beyond.

11.
Gan To Kagaku Ryoho ; 47(12): 1703-1705, 2020 Dec.
Article in Japanese | MEDLINE | ID: mdl-33342987

ABSTRACT

We experienced a case of right sided accessory breast cancer complicated by contralateral breast cancer. A 50-year-old woman came to us for an examination because a tumor in her left breast was pointed out at breast cancer screening. A breast MRI confirmed a tumor in her left breast and a tumor continuing from the skin to the subcutis of the right axilla. A skin biopsy for the tumor in the right axilla and a core needle biopsy(CNB)for the tumor in the left breast were performed. The pathological result of the CNB for the left breast indicated an invasive ductal carcinoma of the tubular formative scirrhous type. Although the tumor of the right axilla was poorly differentiated adenocarcinoma demonstrating cord-like arrays, it was examined by skin biopsy and therefore no deep part of the tissue was included. We conducted immunostaining, in consideration of the possibility of metastasis from the left sided breast cancer. ER, PgR, mammaglobin, GATA 3 were positive, strongly suggesting that the tumor in the right axilla was also derived from a mammary gland. We also performed a wide local excision of the right axilla plus axillary dissection(level Ⅰ)in addition to conducting a left mastectomy plus sentinel lymph node biopsy, in consideration of the possibility of primary right sided accessory breast cancer. The pathological result following surgery confirmed a difference in the histologic features between both sides, residual normal accessory mammary glands around the tumor on the right side, and the presence of rich DCIS and a lobular replacement image, leading to a definitive diagnosis of primary invasive ductal carcinoma of the accessory breast on the right side.


Subject(s)
Breast Diseases , Breast Neoplasms , Carcinoma, Ductal, Breast , Axilla , Breast Neoplasms/surgery , Carcinoma, Ductal, Breast/complications , Carcinoma, Ductal, Breast/surgery , Female , Humans , Lymph Node Excision , Lymph Nodes , Lymphatic Metastasis , Mastectomy , Middle Aged , Sentinel Lymph Node Biopsy
12.
ACS Appl Mater Interfaces ; 12(44): 49713-49722, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33079513

ABSTRACT

Nanostructured polymer interfaces can play a key role in addressing urgent challenges in water purification and advanced separations. Conventional technologies for mercury remediation often necessitate large energetic inputs, produce significant secondary waste, or when electrochemical, lead to strong irreversibility. Here, we propose the reversible, electrochemical capture and release of mercury, by modulating interfacial mercury deposition through a sulfur-containing, semiconducting redox polymer. Electrodeposition/stripping of mercury was carried out with a nanostructured poly(3-hexylthiophene-2,5-diyl)-carbon nanotube composite electrode, coated on titanium (P3HT-CNT/Ti). During electrochemical release, mercury was reversibly stripped in a non-acid electrolyte with 12-fold higher release kinetics compared to nonfunctionalized electrodes. In situ optical microscopy confirmed the rapid, reversible nature of the electrodeposition/stripping process with P3HT-CNT/Ti, indicating the key role of redox processes in mediating the mercury phase transition. The polymer-functionalized system exhibited high mercury removal efficiencies (>97%) in real wastewater matrices while bringing the final mercury concentrations down to <2 µg L-1. Moreover, an energy consumption analysis highlighted a 3-fold increase in efficiency with P3HT-CNT/Ti compared to titanium. Our study demonstrates the effectiveness of semiconducting redox polymers for reversible mercury deposition and points to future applications in mediating electrochemical stripping for various environmental applications.

13.
Adv Mater ; 32(42): e2003684, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32844484

ABSTRACT

The metallic tin (Sn) anode is a promising candidate for next-generation lithium-ion batteries (LIBs) due to its high theoretical capacity and electrical conductivity. However, Sn suffers from severe mechanical degradation caused by large volume changes during lithiation/delithiation, which leads to a rapid capacity decay for LIBs application. Herein, a Cu-Sn (e.g., Cu3 Sn) intermetallic coating layer (ICL) is rationally designed to stabilize Sn through a structural reconstruction mechanism. The low activity of the Cu-Sn ICL against lithiation/delithiation enables the gradual separation of the metallic Cu phase from the Cu-Sn ICL, which provides a regulatable and appropriate distribution of Cu to buffer volume change of Sn anode. Concurrently, the homogeneous distribution of the separated Sn together with Cu promotes uniform lithiation/delithiation, mitigating the internal stress. In addition, the residual rigid Cu-Sn intermetallic shows terrific mechanical integrity that resists the plastic deformation during the lithiation/delithiation. As a result, the Sn anode enhanced by the Cu-Sn ICL shows a significant improvement in cycling stability with a dramatically reduced capacity decay rate of 0.03% per cycle for 1000 cycles. The structural reconstruction mechanism in this work shines a light on new materials and structural design that can stabilize high-performance and high-volume-change electrodes for rechargeable batteries and beyond.

14.
Nature ; 578(7794): 251-255, 2020 02.
Article in English | MEDLINE | ID: mdl-32015545

ABSTRACT

Solid-state lithium metal batteries require accommodation of electrochemically generated mechanical stress inside the lithium: this stress can be1,2 up to 1 gigapascal for an overpotential of 135 millivolts. Maintaining the mechanical and electrochemical stability of the solid structure despite physical contact with moving corrosive lithium metal is a demanding requirement. Using in situ transmission electron microscopy, we investigated the deposition and stripping of metallic lithium or sodium held within a large number of parallel hollow tubules made of a mixed ionic-electronic conductor (MIEC). Here we show that these alkali metals-as single crystals-can grow out of and retract inside the tubules via mainly diffusional Coble creep along the MIEC/metal phase boundary. Unlike solid electrolytes, many MIECs are electrochemically stable in contact with lithium (that is, there is a direct tie-line to metallic lithium on the equilibrium phase diagram), so this Coble creep mechanism can effectively relieve stress, maintain electronic and ionic contacts, eliminate solid-electrolyte interphase debris, and allow the reversible deposition/stripping of lithium across a distance of 10 micrometres for 100 cycles. A centimetre-wide full cell-consisting of approximately 1010 MIEC cylinders/solid electrolyte/LiFePO4-shows a high capacity of about 164 milliampere hours per gram of LiFePO4, and almost no degradation for over 50 cycles, starting with a 1× excess of Li. Modelling shows that the design is insensitive to MIEC material choice with channels about 100 nanometres wide and 10-100 micrometres deep. The behaviour of lithium metal within the MIEC channels suggests that the chemical and mechanical stability issues with the metal-electrolyte interface in solid-state lithium metal batteries can be overcome using this architecture.

15.
Biomater Sci ; 7(7): 3076, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31215566

ABSTRACT

Correction for 'Antioxidant properties of ALD grown nanoceria films with tunable valency' by Ankur Gupta et al., Biomater. Sci., 2019, DOI: 10.1039/c9bm00397e.

16.
Biomater Sci ; 7(7): 3051-3061, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31115397

ABSTRACT

Herein, we provide the first account of a method to control cerium oxide's mixed valence states (as Ce3+ to Ce4+ ratio) in ultra-thin films formed via atomic layer deposition (ALD). It is determined that modulation of Ce3+/Ce4+ ratio occurs with respect to film thickness and is analogous to the change in surface chemistry observed for cerium oxide nanoparticles with varying particle diameter. The influence of film thickness on enzyme-mimetic radical scavenging is also characterized. Higher film thicknesses show 9-fold increase in catalytic activity. In vitro biocompatibility (apoptosis < 4%) and electrochemical biosensing (lowest concentration: 18 ppt) studies were performed to demonstrate the potential of ALD-grown nanoceria films for biomedical applications.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Cerium/chemistry , Cerium/pharmacology , Nanoparticles/chemistry , Nanotechnology , Antioxidants/toxicity , Apoptosis/drug effects , Cell Line , Cerium/toxicity , Humans , Hydrogen Peroxide/analysis , Particle Size
17.
Nat Commun ; 9(1): 4701, 2018 11 08.
Article in English | MEDLINE | ID: mdl-30409968

ABSTRACT

The removal of highly toxic, ultra-dilute contaminants of concern has been a primary challenge for clean water technologies. Chromium and arsenic are among the most prevalent heavy metal pollutants in urban and agricultural waters, with current separation processes having severe limitations due to lack of molecular selectivity. Here, we report redox-active metallopolymer electrodes for the selective electrochemical removal of chromium and arsenic. An uptake greater than 100 mg Cr/g adsorbent can be achieved electrochemically, with a 99% reversible working capacity, with the bound chromium ions released in the less harmful trivalent form. Furthermore, we study the metallopolymer response during electrochemical modulation by in situ transmission electron microscopy. The underlying mechanisms for molecular selectivity are investigated through electronic structure calculations, indicating a strong charge transfer to the heavy metal oxyanions. Finally, chromium and arsenic are remediated efficiently at concentrations as low as 100 ppb, in the presence of over 200-fold excess competing salts.


Subject(s)
Arsenic/isolation & purification , Chromium/isolation & purification , Electrochemistry/methods , Water Pollutants, Chemical/isolation & purification , Water/chemistry , Ferrous Compounds/chemistry , Nanotubes, Carbon/chemistry , Oxidation-Reduction , Polyvinyls/chemistry
18.
Sci Rep ; 8(1): 12651, 2018 Aug 23.
Article in English | MEDLINE | ID: mdl-30140019

ABSTRACT

In this study, the thermal stability of a contact structure featuring hole-selective tungsten oxide (WOx) and aluminum deposited onto p-type crystalline silicon (c-Si/WOx/Al) was investigated using a combination of transmission line measurements (TLM) and in situ transmission electron microscopy (TEM) studies. The TEM images provide insight into why the charge carrier transport and recombination characteristics change as a function of temperature, particularly as the samples are annealed at temperatures above 500 °C. In the as-deposited state, a ≈ 2 nm silicon oxide (SiOx) interlayer forms at the c-Si/WOx interface and a ≈ 2-3 nm aluminum oxide (AlOx) interlayer at the WOx/Al interface. When annealing above 500 °C, Al diffusion begins, and above 600 °C complete intermixing of the SiOx, WOx, AlOx and Al layers occurs. This results in a large drop in the contact resistivity, but is the likely reason surface recombination increases at these high temperatures, since a c-Si/Al contact is basically being formed. This work provides some fundamental insight that can help in the development of WOx films as hole-selective rear contacts for p-type solar cells. Furthermore, this study demonstrates that in situ TEM can provide valuable information about thermal stability of transition metal oxides functioning as carrier-selective contacts in silicon solar cells.

19.
Adv Sci (Weinh) ; 5(7): 1800115, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30027042

ABSTRACT

The room-temperature tensile strength, toughness, and high-temperature creep strength of 2000, 6000, and 7000 series aluminum alloys can be improved significantly by dispersing up to 1 wt% carbon nanotubes (CNTs) into the alloys without sacrificing tensile ductility, electrical conductivity, or thermal conductivity. CNTs act like forest dislocations, except mobile dislocations cannot annihilate with them. Dislocations cannot climb over 1D CNTs unlike 0D dispersoids/precipitates. Also, unlike 2D grain boundaries, even if some debonding happens along 1D CNT/alloy interface, it will be less damaging because fracture intrinsically favors 2D percolating flaws. Good intragranular dispersion of these 1D strengtheners is critical for comprehensive enhancement of composite properties, which entails change of wetting properties and encapsulation of CNTs inside Al grains via surface diffusion-driven cold welding. In situ transmission electron microscopy demonstrates liquid-like envelopment of CNTs into Al nanoparticles by cold welding.

20.
ACS Nano ; 12(6): 6335-6342, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29897730

ABSTRACT

Nonmetallic materials with localized surface plasmon resonance (LSPR) have a great potential for solar energy harvesting applications. Exploring nonmetallic plasmonic materials is desirable yet challenging. Herein, an efficient nonmetallic plasmonic perovskite photoelectrode, namely, SrTiO3, with a periodically ordered nanoporous structure showing an intense LSPR in the visible light region is reported. The crystalline-core@amorphous-shell structure of the SrTiO3 photoelectrode enables a strong LSPR due to the high charge carrier density induced by oxygen vacancies in the amorphous shell. The reversible tunability in LSPR of the SrTiO3 photoelectrode was observed by oxidation/reduction treatment and incident angle adjusting. Such a nonmetallic plasmonic SrTiO3 photoelectrode displays a dramatic plasmon-enhanced photoelectrochemical water splitting performance with a photocurrent density of 170.0 µA cm-2 under visible light illumination and a maximum incident photon-to-current-conversion efficiency of 4.0% in the visible light region, which are comparable to the state-of-the-art plasmonic noble metal sensitized photoelectrodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...