Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Virol ; 165(5): 1253-1260, 2020 May.
Article in English | MEDLINE | ID: mdl-32162068

ABSTRACT

This article is a summary of the activities of the ICTV's Bacterial and Archaeal Viruses Subcommittee for the years 2018 and 2019. Highlights include the creation of a new order, 10 families, 22 subfamilies, 424 genera and 964 species. Some of our concerns about the ICTV's ability to adjust to and incorporate new DNA- and protein-based taxonomic tools are discussed.


Subject(s)
Archaeal Viruses/classification , Bacteriophages/classification , Classification/methods , Archaea/virology , Bacteria/virology
2.
Genome Announc ; 1(6)2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24336362

ABSTRACT

RB43-related bacteriophages have a specific genome type that clearly distinguishes them from other T4-like viruses. Here, we present the complete genome sequence of a new virulent phage, Lw1, isolated as an Escherichia coli BL21(DE3) contaminant. Lw1 shares an RB43-like genome organization, but it does not contain putative AP2-domain endonuclease genes.

3.
PLoS One ; 7(7): e40102, 2012.
Article in English | MEDLINE | ID: mdl-22792219

ABSTRACT

Among dsDNA tailed bacteriophages (Caudovirales), members of the Myoviridae family have the most sophisticated virion design that includes a complex contractile tail structure. The Myoviridae generally have larger genomes than the other phage families. Relatively few "dwarf" myoviruses, those with a genome size of less than 50 kb such as those of the Mu group, have been analyzed in extenso. Here we report on the genome sequencing and morphological characterization of a new group of such phages that infect a diverse range of Proteobacteria, namely Aeromonas salmonicida phage 56, Vibrio cholerae phages 138 and CP-T1, Bdellovibrio phage φ1422, and Pectobacterium carotovorum phage ZF40. This group of dwarf myoviruses shares an identical virion morphology, characterized by usually short contractile tails, and have genome sizes of approximately 45 kb. Although their genome sequences are variable in their lysogeny, replication, and host adaption modules, presumably reflecting differing lifestyles and hosts, their structural and morphogenesis modules have been evolutionarily constrained by their virion morphology. Comparative genomic analysis reveals that these phages, along with related prophage genomes, form a new coherent group within the Myoviridae. The results presented in this communication support the hypothesis that the diversity of phages may be more structured than generally believed and that the innumerable phages in the biosphere all belong to discrete lineages or families.


Subject(s)
Bacteriophages/genetics , Bacteriophages/ultrastructure , Bacteriophages/physiology , Gene Order , Genome, Viral , Molecular Sequence Data , Myoviridae/genetics , Myoviridae/physiology , Myoviridae/ultrastructure , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...