Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(11): e21462, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027911

ABSTRACT

N-(3-oxododecanoyl)-l-homoserine lactone is a Pseudomonas aeruginosa secreted quorum-sensing molecule that mediates the secretion of virulence factors, biofilm formation and plays a pivotal role in proliferation and persistence in the host. Apart from regulating quorum-sensing, the autoinducer signal molecule N-(3-oxododecanoyl)-l-homoserine lactone (3O-C12-HSL or C12) of a LasI-LasR circuit exhibits immunomodulatory effects and induces apoptosis in various host cells. However, the precise pathophysiological impact of C12 on human peripheral blood lymphocytes and its involvement in mitochondrial dysfunction remained largely elusive. In this study, the results suggest that C12 (100 µM) induces upregulation of cytosolic and mitochondrial Ca+2 levels and triggers mitochondrial dysfunction through the generation of mitochondrial ROS (mROS), disruption of mitochondrial transmembrane potential (ΔΨm), and opening of the mitochondrial permeability transition pore (mPTP). Additionally, it was observed that C12 induces phosphatidylserine (PS) exposure and promotes apoptosis in human peripheral blood lymphocytes. However, apoptosis plays a critical role in the homeostasis and development of lymphocytes, whereas enhanced apoptosis can cause immunodeficiency through cell loss. These findings suggest that C12 exerts a detrimental effect on lymphocytes by mediating mitochondrial dysfunction and enhancing apoptosis, which might further impair the effective mounting of immune responses during Pseudomonas aeruginosa-associated infections.

2.
Biochim Biophys Acta Gen Subj ; 1867(2): 130269, 2023 02.
Article in English | MEDLINE | ID: mdl-36379399

ABSTRACT

Pseudomonas quinolone signal (PQS) is a quorum-sensing molecule associated with Pseudomonas aeruginosa that regulates quorum sensing, extracellular vesicle biogenesis, iron acquisition, and the secretion of virulence factors. PQS has been shown to have immunomodulatory effects on the host. It induces oxidative stress, modulates cytokine levels, and activates regulated cell death in the host. In this study, we investigated the effects of PQS (10 µM) on host organelle dynamics and dysfunction in human macrophages at the interphase of endoplasmic reticulum (ER), mitochondria, and lysosome. This study showed that PQS increases cytosolic Ca+2 levels and elevates ER stress, as evidenced by increased expression of BiP and activation of the PERK-CHOP axis of unfolded protein response (UPR). Moreover, PQS also negatively affects mitochondria by disrupting mitochondrial membrane potential and increasing mitochondrial ROS generation (mROS). Additionally, PQS stimulation decreased the number of acridine orange-positive lysosomes, indicating lysosomal destabilization. Furthermore, PQS-induced lysosomal destabilization also induces overexpression of the lysosomal stress-responsive gene TFEB. Besides organelle dysfunction, PQS dysregulates inflammation-related genes by upregulating NLRC4, TMS1, and Caspase 1 while downregulating NLRP3 and IL-1ß. Also, PQS increases gene expression of pro-inflammatory cytokines (IL-6, TNF-α, and IFN-γ). In conclusion, our findings suggest that PQS negatively affects human macrophages by interfering with organelle function and dysregulating inflammatory response. Consequently, this study provides crucial insight into PQS-driven macrophage dysfunction and may contribute to a better understanding of Pseudomonas aeruginosa-associated infections.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Organelles , Macrophages , Inflammation
3.
Cell Signal ; 99: 110441, 2022 11.
Article in English | MEDLINE | ID: mdl-35995303

ABSTRACT

N-(3-oxododecanoyl) homoserine lactone (3oc) is a Pseudomonas aeruginosa secreted quorum-sensing signal molecule playing a crucial role in regulating quorum-sensing (QS) dependent biofilm formation and secretion of virulence factors. In addition to regulating quorum sensing, 3oc also plays an immunomodulatory role in the host by triggering regulated cell death in immune cells. The molecular mechanisms of 3oc in modulating macrophage pathologies are still unclear. In this study, we hypothesized the novel 3oc mediated crosstalk between autophagy and apoptosis at the interphase of calcium signaling in human macrophages. The study showed that 3oc induces mitochondrial dysfunction and apoptosis in macrophages through elevating cytosolic Ca+2 ([Ca+2]cyt) levels. Pre-treatment with the calcium-specific chelator BAPTA-AM effectively abrogated 3oc-induced apoptotic events, like mitochondrial ROS generation (mROS), mitochondrial membrane potential (MMP) drop, and phosphatidylserine (PS) exposure. The study also showed that 3oc induces autophagy, as assessed by the accumulation of autophagic vacuoles, induction of lysosomal biogenesis, upregulation of autophagy genes (LC3, BECLIN 1, STX17, PINK1, and TFEB), autophagosomes formation, and LC3 lipidation. Mechanistically, our study proved that 3oc-induced autophagy was [Ca+2]cyt dependent as BAPTA-AM pre-treatment reduced autophagosome formation. Furthermore, inhibiting autophagy with chloroquine attenuated 3oc-induced apoptosis, while autophagy induction with rapamycin aggravated cell death, suggesting autophagy plays a role in cell death in 3oc-treated macrophages. In conclusion, our findings indicate that 3oc activates a multifaceted death signaling by activating autophagy and apoptosis through Ca+2 signaling, and we propose pharmacological modulation of Ca+2 signaling may act as a combinatorial therapeutic intervention in patients with Pseudomonas aeruginosa-associated infections.


Subject(s)
Pseudomonas Infections , Quorum Sensing , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Apoptosis , Autophagy , Beclin-1/metabolism , Calcium/metabolism , Calcium Signaling , Chelating Agents/metabolism , Chelating Agents/pharmacology , Chloroquine/pharmacology , Egtazic Acid/analogs & derivatives , Homoserine , Humans , Macrophages/metabolism , Phosphatidylserines/metabolism , Protein Kinases/metabolism , Pseudomonas aeruginosa , Reactive Oxygen Species/metabolism , Sirolimus/pharmacology , Virulence Factors/metabolism , Virulence Factors/pharmacology
4.
Acute Crit Care ; 36(3): 215-222, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34311515

ABSTRACT

BACKGROUND: Patients with sepsis are at risk for developing sepsis-induced cardiomyopathy (SIC). Previous studies offer inconsistent results regarding the association of SIC and mortality. This study sought to assess whether SIC is linked to mortality in patients with sepsis and to evaluate predictors of the development of SIC. METHODS: In this retrospective study, patients admitted to the medical intensive care unit with a diagnosis of sepsis in the absence of acute coronary syndrome were included. SIC was identified using transthoracic echo and was defined by a new onset decline in left ventricular ejection fraction (LVEF) ≤50%, or ≥10% decline in LVEF compared to baseline in patients with a history of heart failure with reduced ejection fraction. Multivariable logistic regression analysis was performed using the R software program. RESULTS: Of the 359 patients in the final analysis, 19 (5.3%) had SIC. Eight (42.1%) of the 19 patients in the SIC group and 60 (17.6%) of the 340 patients in the non-SIC group died during hospitalization. SIC was associated with an increased risk for all-cause in-hospital mortality (odds ratio [OR], 4.46; 95% confidence interval [CI], 1.15-18.69; P=0.03). Independent predictors for the development of SIC were albumin level (OR, 0.47; 95% CI, 0.23-0.93; P=0.03) and culture positivity (OR, 8.47; 95% CI, 2.24-55.61; P=0.006). Concomitant right ventricular hypokinesis was noted in 13 (68.4%) of the 19 SIC patients. CONCLUSIONS: SIC was associated with an increased risk for all-cause in-hospital mortality. Low albumin level and culture positivity were independent predictors of SIC.

SELECTION OF CITATIONS
SEARCH DETAIL
...