Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Bioinorg Chem Appl ; 2022: 6825150, 2022.
Article in English | MEDLINE | ID: mdl-35308019

ABSTRACT

Nanoparticles show the multidisciplinary versatile utility and are gaining the prime place in various fields, such as medicine, electronics, pharmaceuticals, electrical designing, cosmetics, food industries, and agriculture, due to their small size and large surface to volume ratio. Biogenic or green synthesis methods are environmentally friendly, economically feasible, rapid, free of organic solvents, and reliable over conventional methods. Plant extracts are of incredible potential in the biosynthesis of metal nanoparticles owing to their bountiful availability, stabilizing, and reducing ability. In the present study, the aqueous leaf extract of Buchanania lanzan Spreng was mixed with 0.5 mM silver nitrate and incubated at 70°C for 1 h and synthesized a good quantity of AgNPs. The synthesized AgNPs were characterized using UV-visible spectroscopy, X-ray diffractometry (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The maximum absorption of UV-visible spectra was obtained in the range of 420-430 nm. Furthermore, SEM and TEM results inferred that the size of the particles were 23-62 nm, spherical, crystalline, uniformly distributed, and negatively charged with the zeta potential of -27.6 mV. In addition, the antifungal activities of the AgNPs were evaluated against two phytopathogenic fungi Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici in vitro using poison food techniques on PDA media. The maximum rate of mycelia inhibition was found in 150 ppm concentration of AgNPs against both phytopathogenic fungi.

2.
IET Nanobiotechnol ; 11(5): 531-537, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28745285

ABSTRACT

In the recent decades, nanotechnology is gaining tremendous impetus due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical, biological and optical properties of metals. In this study, silver nanoparticles (AgNPs) synthesis using aqueous leaf extracts of Tagetes patula L. which act as reducing agent as well as capping agent is reported. Synthesis of AgNPs was observed at different parameters like temperature, concentration of silver nitrate, leaf extract concentration and time of reduction. The AgNPs were characterized using UV-vis spectroscopy, scanning electron microscope with energy dispersive spectroscopy, transmission electron microscopy with selected area electron diffraction, X-ray diffraction, Fourier transform infrared and dynamic light scattering analysis. These analyses revealed the size of nanoparticles ranging from 15 to 30 nm as well revealed their spherical shape and cubic and hexagonal lattice structure. The lower zeta potential (-14.2mV) and the FTIR spectra indicate that the synthesized AgNPs are remarkably stable for a long period due to the capped biomolecules on the surface of nanoparticles. Furthermore, these AgNPs were found to be highly toxic against phytopathogenic fungi Colletotrichum chlorophyti by both in vitro and in vivo and might be a safer alternative to chemical fungicides.


Subject(s)
Antifungal Agents/pharmacology , Colletotrichum/drug effects , Metal Nanoparticles/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Silver/pharmacology , Tagetes/chemistry , Colletotrichum/pathogenicity , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Particle Size , Plant Extracts/chemistry , Silver/chemistry , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , Water/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL