Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Front Cell Infect Microbiol ; 14: 1375249, 2024.
Article in English | MEDLINE | ID: mdl-38808064

ABSTRACT

Introduction: Diversity in malarial antigens is an immune evasion mechanism that gives malaria parasites an edge over the host. Immune responses against one variant of a polymorphic antigen are usually not fully effective against other variants due to altered epitopes. This study aimed to evaluate diversity in the Plasmodium falciparum antigens apical membrane antigen 1 (PfAMA1) and circumsporozoite protein (PfCSP) from circulating parasites in a malaria-endemic community in southern Ghana and to determine the effects of polymorphisms on antibody response specificity. Methods: The study involved 300 subjects, whose P. falciparum infection status was determined by microscopy and PCR. Diversity within the two antigens was evaluated by msp2 gene typing and molecular gene sequencing, while the host plasma levels of antibodies against PfAMA1, PfCSP, and two synthetic 24mer peptides from the conserved central repeat region of PfCSP, were measured by ELISA. Results: Of the 300 subjects, 171 (57%) had P. falciparum infection, with 165 of the 171 (96.5%) being positive for either or both of the msp2 allelic families. Gene sequencing of DNA from 55 clonally infected samples identified a total of 56 non-synonymous single nucleotide polymorphisms (SNPs) for the Pfama1 gene and these resulted in 44 polymorphic positions, including two novel positions (363 and 365). Sequencing of the Pfcsp gene from 69 clonal DNA samples identified 50 non-synonymous SNPs that resulted in 42 polymorphic positions, with half (21) of these polymorphic positions being novel. Of the measured antibodies, only anti-PfCSP antibodies varied considerably between PCR parasite-positive and parasite-negative persons. Discussion: These data confirm the presence of a considerable amount of unique, previously unreported amino acid changes, especially within PfCSP. Drivers for this diversity in the Pfcsp gene do not immediately seem apparent, as immune pressure will be expected to drive a similar level of diversity in the Pfama1 gene.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Malaria, Falciparum , Membrane Proteins , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Ghana , Humans , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Female , Adult , Male , Adolescent , Young Adult , Child , Genetic Variation , Child, Preschool , Middle Aged , Sequence Analysis, DNA , Enzyme-Linked Immunosorbent Assay , Polymerase Chain Reaction , Antigenic Variation , DNA, Protozoan/genetics
2.
Sci Rep ; 14(1): 10772, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730052

ABSTRACT

We aimed to determine SARS-CoV-2 antibody seropositivity among pregnant women and the transplacental transfer efficiency of SARS-CoV-2-specific antibodies relative to malaria antibodies among SARS-CoV-2 seropositive mother-cord pairs. This cross-sectional study was conducted in Accra, Ghana, from March to May 2022. Antigen- specific IgG antibodies against SARS-CoV-2 (nucleoprotein and spike-receptor binding domain) and malarial antigens (circumsporozoite protein and merozoite surface protein 3) in maternal and cord plasma were measured by ELISA. Plasma from both vaccinated and unvaccinated pregnant women were tested for neutralizing antibodies using commercial kit. Of the unvaccinated pregnant women tested, 58.12% at antenatal clinics and 55.56% at the delivery wards were seropositive for both SARS-CoV-2 nucleoprotein and RBD antibodies. Anti-SARS-CoV-2 antibodies in cord samples correlated with maternal antibody levels (N antigen rs = 0.7155, p < 0.001; RBD rs = 0.8693, p < 0.001). Transplacental transfer of SARS-CoV-2 nucleoprotein antibodies was comparable to circumsporozoite protein antibodies (p = 0.9999) but both were higher than transfer rates of merozoite surface protein 3 antibodies (p < 0.001). SARS-CoV-2 IgG seropositivity among pregnant women in Accra is high with a boost of SARS-CoV-2 RBD-specific IgG in vaccinated women. Transplacental transfer of anti-SARS-CoV-2 and malarial antibodies was efficient, supporting vaccination of mothers as a strategy to protect infants against SARS-CoV-2.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Humans , Female , Pregnancy , Ghana , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , Antibodies, Viral/immunology , Antibodies, Viral/blood , Adult , Cross-Sectional Studies , Immunoglobulin G/blood , Immunoglobulin G/immunology , Maternal-Fetal Exchange/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Infant , Infant, Newborn , Spike Glycoprotein, Coronavirus/immunology , Immunity, Maternally-Acquired , Young Adult , Fetal Blood/immunology , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood
3.
PLoS One ; 18(11): e0294066, 2023.
Article in English | MEDLINE | ID: mdl-38019839

ABSTRACT

Leucocytozoon is a haemosporidian parasite known to cause leucocytozoonosis in domestic and wild birds in most parts of the world. It is an important pathogen, as some species can be pathogenic, especially in domestic birds. One of the factors affecting poultry health management worldwide is parasitism. However, the study of haemosporidian parasites in Ghana is still lacking. This study sought to assess the prevalence and diversity of Leucocytozoon parasites in domestic birds in Ghana. Blood samples were collected from domestic birds in Ghana's Bono and Eastern regions to screen for Leucocytozoon parasites. Thin blood smears were prepared for microscopy and DNA was extracted from whole blood kept in ethylenediaminetetraacetic acid (EDTA) tubes for PCR. Due to the large number of samples, real-time PCR was performed to amplify the conserved rDNA gene. Two different nested PCR protocols were performed on the positive samples obtained from real-time PCR results, to amplify a partial region of the mitochondrial cytochrome b gene and the amplicons were sequenced. Sequencing revealed six new lineages of Leucocytozoon sp. recovered in 976 individual domestic birds and these sequences were deposited in the National Center for Biotechnology Information (NCBI) GenBank. An overall Leucocytozoon prevalence of 11.6% was reported in all birds sampled. The most prevalent lineage LGHA146 (GenBank accession no. OM643346) (93.8%) was found infecting 3 bird species, Gallus gallus, Meleagris gallopavo, and Anas platyrhynchos. Phylogenetic analysis revealed that the new lineages (GenBank accession nos. OM643342, OM643343, OM643344, OM643345, OM643346, and OM643347), reported in this study were closely related to Leucocytozoon schoutedeni. We suggest that further studies be conducted to evaluate the effect of these parasite species on the general well-being of poultry in Ghana.


Subject(s)
Bird Diseases , Haemosporida , Parasites , Protozoan Infections, Animal , Animals , Phylogeny , Prevalence , Ghana/epidemiology , Bird Diseases/epidemiology , Bird Diseases/parasitology , Haemosporida/genetics , Birds , Parasites/genetics , Protozoan Infections, Animal/epidemiology , Protozoan Infections, Animal/parasitology
4.
J Immunol Res ; 2022: 8873536, 2022.
Article in English | MEDLINE | ID: mdl-35928633

ABSTRACT

Type 1 interferons (IFN-1) are pleiotropic cytokines with well-established anticancer and antiviral properties, particularly in mucosal tissues. Hence, natural IFN-1-inducing treatments are highly sought after in the clinic. Here, we report for the first time that cryptolepine, a pharmacoactive alkaloid in the medicinal plant Cryptolepis sanguinolenta, is a potent IFN-1 pathway inducer. Cryptolepine increased the transcript levels of JAK1, TYK2, STAT1, STAT2, IRF9, and OAS3, as well as increased the accumulation of STAT1 and OAS3 proteins, similar to recombinant human IFN-α. Cryptolepine effects were observed in multiple cell types including a model of human macrophages. This response was maintained in MAVS and STING-deficient cell lines, suggesting that cryptolepine effects are not mediated by nucleic acids released upon nuclear or organelle damage. In agreement, cryptolepine did not affect cell viability in concentrations that triggered potent IFN-1 activation. In addition, we observed no differences in the presence of a pharmacological inhibitor of TBK1, a pleiotropic kinase that is a converging point for Toll-like receptors (TLRs) and nucleic acid sensors. Together, our results demonstrate that cryptolepine is a strong inducer of IFN-1 response and suggest that cryptolepine-based medications such as C. sanguinolenta extract could be potentially tested in resource-limited regions of the world for the management of chronic viral infections as well as cancers.


Subject(s)
Alkaloids , Antineoplastic Agents , Interferon Type I , Quinolines , Alkaloids/pharmacology , Humans , Indole Alkaloids/pharmacology , Quinolines/pharmacology
5.
Sci Rep ; 12(1): 12994, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906450

ABSTRACT

Members of the highly polymorphic Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family expressed on the surface of infected erythrocytes (IEs) are important virulence factors, which mediate vascular adhesion of IEs via endothelial host receptors and are targets of naturally acquired immunity. The PfEMP1 family can be divided into clinically relevant subgroups, of which some bind intercellular adhesion molecule 1 (ICAM-1). While the acquisition of IgG specific for ICAM-1-binding DBLß domains is known to differ between PfEMP1 groups, its ability to induce antibody-dependent cellular phagocytosis (ADCP) is unclear. We therefore measured plasma levels of DBLß-specific IgG, the ability of such IgG to inhibit PfEMP1-binding to ICAM-1, and its ability to opsonize IEs for ADCP, using plasma from Beninese children with severe (SM) or uncomplicated malaria (UM). IgG specific for DBLß from group A and B ICAM-1-binding PfEMP1 were dominated by IgG1 and IgG3, and were similar in SM and UM. However, levels of plasma IgG inhibiting ICAM-1-binding of group A DBLß of PFD1235w was significantly higher in children with UM than SM, and acute UM plasma induced a higher ADCP response than acute SM plasma.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Antibodies, Protozoan , Antigens, Protozoan , Benin , Child , Erythrocytes/metabolism , Humans , Immunoglobulin G , Intercellular Adhesion Molecule-1/metabolism , Phagocytosis , Protozoan Proteins
6.
BMC Med ; 20(1): 167, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35501853

ABSTRACT

In December 2019, a new coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and associated disease, coronavirus disease 2019 (COVID-19), was identified in China. This virus spread quickly and in March, 2020, it was declared a pandemic. Scientists predicted the worst scenario to occur in Africa since it was the least developed of the continents in terms of human development index, lagged behind others in achievement of the United Nations sustainable development goals (SDGs), has inadequate resources for provision of social services, and has many fragile states. In addition, there were relatively few research reporting findings on COVID-19 in Africa. On the contrary, the more developed countries reported higher disease incidences and mortality rates. However, for Africa, the earlier predictions and modelling into COVID-19 incidence and mortality did not fit into the reality. Therefore, the main objective of this forum is to bring together infectious diseases and public health experts to give an overview of COVID-19 in Africa and share their thoughts and opinions on why Africa behaved the way it did. Furthermore, the experts highlight what needs to be done to support Africa to consolidate the status quo and overcome the negative effects of COVID-19 so as to accelerate attainment of the SDGs.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/epidemiology , Humans , Pandemics , Public Health , SARS-CoV-2
7.
Malar J ; 21(1): 107, 2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35346205

ABSTRACT

BACKGROUND: Despite decades of prevention efforts, the burden of malaria in pregnancy (MiP) remains a great public health concern. Sulfadoxine-pyrimethamine (SP), used as intermittent preventive treatment in pregnancy (IPTp-SP) is an important component of the malaria prevention strategy implemented in Africa. However, IPTp-SP is under constant threat from parasite resistance, thus requires regular evaluation to inform decision-making bodies. METHODS: In two malaria endemic communities in the Volta region (Adidome and Battor), a cross-sectional hospital-based study was conducted in pregnant women recruited at their first antenatal care (ANC) visit and at delivery. Basic clinical and demographic information were documented and their antenatal records were reviewed to confirm IPTp-SP adherence. Peripheral and placental blood were assayed for the presence of Plasmodium falciparum parasites by quantitative polymerase chain reaction (qPCR). One hundred and twenty (120) positive samples were genotyped for mutations associated with SP resistance. RESULTS: At first ANC visit, P. falciparum prevalence was 28.8% in Adidome and 18.2% in Battor. At delivery, this decreased to 14.2% and 8.2%, respectively. At delivery, 66.2% of the women had taken at least the recommended 3 or more doses of IPTp-SP and there was no difference between the two communities. Taking at least 3 IPTp-SP doses was associated with an average birth weight increase of more than 360 g at both study sites compared to women who did not take treatment (p = 0.003). The Pfdhfr/Pfdhps quintuple mutant IRNI-A/FGKAA was the most prevalent (46.7%) haplotype found and the nonsynonymous Pfdhps mutation at codon A581G was higher at delivery among post-SP treatment isolates (40.6%) compared to those of first ANC (10.22%). There was also an increase in the A581G mutation in isolates from women who took 3 or more IPTp-SP. CONCLUSIONS: This study confirms a positive impact following the implementation of the new IPTp-SP policy in Ghana in increasing the birth weight of newborns. However, the selection pressure exerted by the recommended 3 or more doses of IPTp-SP results in the emergence of parasites carrying the non-synonymous mutation on codon A581G. This constant selective pressure calls into question the time remaining for the clinical utility of IPTp-SP treatment during pregnancy in Africa.


Subject(s)
Antimalarials , Malaria, Falciparum , Plasmodium falciparum/drug effects , Pregnancy Complications, Parasitic , Antimalarials/therapeutic use , Cross-Sectional Studies , Drug Combinations , Drug Resistance , Female , Ghana/epidemiology , Humans , Infant, Newborn , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Placenta , Pregnancy , Pregnancy Complications, Parasitic/epidemiology , Pregnancy Complications, Parasitic/prevention & control , Prenatal Care , Pyrimethamine , Sulfadoxine
8.
J Infect Dis ; 225(10): 1786-1790, 2022 05 16.
Article in English | MEDLINE | ID: mdl-34718631

ABSTRACT

Cerebral malaria (CM) may cause death or long-term neurological damage in children, and several host genetic risk factors have been reported. Malaria-specific immunoglobulin (Ig) G3 antibodies are crucial to human immune response against malaria. The hinge region of IgG3 exhibits length polymorphism (with long [L], medium [M], and short [S] alleles), which may influence its functionality. We studied IgG3 hinge region length polymorphisms in 136 Ghanaian children with malaria. Using logistic regression models, we found that children with the recessive MM allotype encoding medium IgG3 hinge region length had an increased risk of CM (adjusted odds ratio, 6.67 [95% confidence interval,1.30-34.32]; P=.004) . This has implications for future epidemiological studies on CM.


Subject(s)
Antibodies, Protozoan , Immunoglobulin G , Malaria, Cerebral , Malaria, Falciparum , Antibodies, Protozoan/genetics , Child , Ghana/epidemiology , Humans , Immunoglobulin G/genetics , Malaria, Cerebral/epidemiology , Malaria, Cerebral/genetics , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Plasmodium falciparum
9.
Malar J ; 20(1): 367, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34507582

ABSTRACT

BACKGROUND: Malaria eradication requires a combined effort involving all available control tools, and these efforts would be complemented by an effective vaccine. The antigen targets of immune responses may show polymorphisms that can undermine their recognition by immune effectors and hence render vaccines based on antigens from a single parasite variant ineffective against other variants. This study compared the influence of allelic polymorphisms in Plasmodium falciparum apical membrane antigen 1 (PfAMA1) peptide sequences from three strains of P. falciparum (3D7, 7G8 and FVO) on their function as immunodominant targets of T cell responses in high and low malaria transmission communities in Ghana. METHODS: Peripheral blood mononuclear cells (PBMCs) from 10 subjects from a high transmission area (Obom) and 10 subjects from a low transmission area (Legon) were tested against 15 predicted CD8 + T cell minimal epitopes within the PfAMA1 antigen of multiple parasite strains using IFN-γ ELISpot assay. The peptides were also tested in similar assays against CD8 + enriched PBMC fractions from the same subjects in an effort to characterize the responding T cell subsets. RESULTS: In assays using unfractionated PBMCs, two subjects from the high transmission area, Obom, responded positively to four (26.7%) of the 15 tested peptides. None of the Legon subject PBMCs yielded positive peptide responses using unfractionated PBMCs. In assays with CD8 + enriched PBMCs, three subjects from Obom made positive recall responses to six (40%) of the 15 tested peptides, while only one subject from Legon made a positive recall response to a single peptide. Overall, 5 of the 20 study subjects who had positive peptide-specific IFN-γ recall responses were from the high transmission area, Obom. Furthermore, while subjects from Obom responded to peptides in PfAMA1 from multiple parasite strains, one subject from Legon responded to a peptide from 3D7 strain only. CONCLUSIONS: The current data demonstrate the possibility of a real effect of PfAMA1 polymorphisms on the induction of T cell responses in malaria exposed subjects, and this effect may be more pronounced in communities with higher parasite exposure.


Subject(s)
Antigens, Protozoan/genetics , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Malaria, Falciparum/immunology , Membrane Proteins/genetics , Plasmodium falciparum/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Adult , Alleles , Female , Ghana , Humans , Male , Middle Aged , Young Adult
10.
BMC Complement Med Ther ; 21(1): 161, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34078370

ABSTRACT

BACKGROUND: Diverse signalling pathways are involved in carcinogenesis and one of such pathways implicated in many cancers is the interleukin 6/signal transducer and activator of transcription 3 (IL-6/STAT3) signalling pathway. Therefore, inhibition of this pathway is targeted as an anti-cancer intervention. This study aimed to establish the effect of cryptolepine, which is the main bioactive alkaloid in the medicinal plant Cryptolepis sanguinolenta, on the IL-6/STAT3 signalling pathway. METHODS: First, the effect of cryptolepine on the IL-6/STAT3 pathway in human hepatoma cells (HepG2 cells) was screened using the Cignal Finder Multi-Pathway Reporter Array. Next, to confirm the effect of cryptolepine on the IL-6/STAT3 signalling pathway, the pathway was activated using 200 ng/mL IL-6 in the presence of 0.5-2 µM cryptolepine. The levels of total STAT3, p-STAT3 and IL-23 were assessed by ELISA. RESULTS: Cryptolepine downregulated 12 signalling pathways including the IL-6/STAT3 signalling pathway and upregulated 17 signalling pathways. Cryptolepine, in the presence of IL-6, decreased the levels of p-STAT3 and IL-23 in a dose-dependent fashion. CONCLUSION: Our results demonstrated that cryptolepine inhibits the IL-6/STAT3 signalling pathway, and therefore cryptolepine-based remedies such as Cryptolepis sanguinolenta could potentially be used as an effective immunotherapeutic agent for hepatocellular carcinoma and other cancers.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Indole Alkaloids/pharmacology , Interleukin-6/metabolism , Liver Neoplasms/metabolism , Quinolines/pharmacology , STAT3 Transcription Factor/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Cryptolepis/chemistry , Hep G2 Cells , Humans , Signal Transduction/drug effects
11.
Sci Rep ; 11(1): 7129, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782439

ABSTRACT

Human erythrocytes are indispensable for Plasmodium falciparum development. Unlike other eukaryotic cells, there is no existing erythroid cell line capable of supporting long-term P. falciparum in vitro experiments. Consequently, invasion phenotyping experiments rely on erythrocytes of different individuals. However, the contribution of the erythrocytes variation in influencing invasion rates remains unknown, which represents a challenge for conducting large-scale comparative studies. Here, we used erythrocytes of different blood groups harboring different hemoglobin genotypes to assess the relative contribution of blood donor variability in P. falciparum invasion phenotyping assays. For each donor, we investigated the relationship between parasite invasion phenotypes and erythrocyte phenotypic characteristics, including the expression levels of surface receptors (e.g. the human glycophorins A and C, the complement receptor 1 and decay accelerating factor), blood groups (e.g. ABO/Rh system), and hemoglobin genotypes (e.g. AA, AS and AC). Across all donors, there were significant differences in invasion efficiency following treatment with either neuraminidase, trypsin or chymotrypsin relative to the control erythrocytes. Primarily, we showed that the levels of key erythrocyte surface receptors and their sensitivity to enzyme treatment significantly differed across donors. However, invasion efficiency did not correlate with susceptibility to enzyme treatment or with the levels of the selected erythrocyte surface receptors. Furthermore, we found no relationship between P. falciparum invasion phenotype and blood group or hemoglobin genotype. Altogether, our findings demonstrate the need to consider erythrocyte donor uniformity and anticipate challenges associated with blood donor variability in early stages of large-scale study design.


Subject(s)
Blood Donors , Plasmodium falciparum/pathogenicity , Humans , Phenotype
12.
Exp Biol Med (Maywood) ; 246(1): 10-19, 2021 01.
Article in English | MEDLINE | ID: mdl-33019810

ABSTRACT

IMPACT STATEMENT: Plasmodium falciparum malaria is a global health problem. Erythrocyte invasion by P. falciparum merozoites appears to be a promising target to curb malaria. We have identified and characterized a novel protein that is involved in erythrocyte invasion. Our data on protein subcellular localization, stage-specific protein expression pattern, and merozoite invasion inhibition by α-peptide antibodies suggest a role for PF3D7_1459400 protein during P. falciparum erythrocyte invasion. Even more, the human immunoepidemiology data present PF3D7_1459400 protein as an immunogenic antigen which could be further exploited for the development of new anti-infective therapy against malaria.


Subject(s)
Erythrocytes/parasitology , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Adult , Amino Acid Sequence , Animals , Antibodies, Protozoan/immunology , Conserved Sequence , Humans , Life Cycle Stages , Plasmodium falciparum/growth & development , Plasmodium falciparum/immunology , Protozoan Proteins/chemistry , Rats , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Subcellular Fractions/metabolism
13.
Exp Biol Med (Maywood) ; 245(9): 815-822, 2020 05.
Article in English | MEDLINE | ID: mdl-32349537

ABSTRACT

IMPACT STATEMENT: Genetic association studies can determine the effect size of gene loci on disease outcomes. In the arena of HBV infections, HLA alleles that associate with HBV outcomes can be used in clinical management decisions. This potential translational utility can shape the future management of HBV infections by identifying at-risk individuals and tailoring medical interventions accordingly. This precision medicine motif is currently only a nascent idea. However, it has stakes that may well override the current "wait and see" approach of clinical management of HBV infections. Here, we have identified HLA alleles associated with HBV outcome in a Ghanaian cohort. Our findings support the motif that HLA alleles associate with HBV outcome along geo-ethnic lines. This buttresses the need for further population pivoted studies. In the long term, our findings add to efforts towards the development of an HLA molecular-based algorithm for predicting HBV infection outcomes.


Subject(s)
Genetic Predisposition to Disease/genetics , HLA Antigens/genetics , Hepatitis B, Chronic/genetics , Adult , Alleles , Female , Genetic Variation , Genotype , Ghana , HLA Antigens/immunology , Hepatitis B virus , Hepatitis B, Chronic/immunology , Humans , Male
14.
J Trop Med ; 2020: 1386587, 2020.
Article in English | MEDLINE | ID: mdl-32308690

ABSTRACT

Water bodies such as dams are known to alter the local transmission patterns of a number of infectious diseases, especially those transmitted by insects and other arthropod vectors. The impact of an irrigation dam on submicroscopic asexual parasite carriage in individuals living in a seasonal malaria transmission area of northern Ghana was investigated. A total of 288 archived DNA samples from two cross-sectional surveys in two communities in the Bongo District of Northern Ghana were analysed. Parasite density was determined by light microscopy and PCR, and parasite diversity was assessed by genotyping of the polymorphic Plasmodium falciparum msp2 block-3 region. Submicroscopic parasitaemia was estimated as the proportional difference between positive samples identified by PCR and microscopy. Dry season submicroscopic parasite prevalence was significantly higher (71.0%, p=0.013) at the dam site compared with the nondam site (49.2%). Similarly, wet season submicroscopic parasite prevalence was significantly higher at the dam site (54.5%, p=0.008) compared with the nondam site (33.0%). There was no difference in parasite density between sites in the dry season (p=0.90) and in the wet season (p=0.85). Multiplicity of infection (MOI) based on PCR data was significantly higher at the dam site compared with the nondam site during the dry season (p < 0.0001) but similar between sites during the wet season. MOI at the nondam site was significantly higher in the wet season than in the dry season (2.49, 1.26, p < 0.0001) but similar between seasons at the dam site. Multivariate analysis showed higher odds of carrying submicroscopic parasites at the dam site in both dry season (OR = 7.46, 95% CI = 3.07-18.15) and in wet season (OR = 1.73, 95% CI = 1.04-2.86). The study findings suggest that large water bodies impact year-round carriage of submicroscopic parasites and sustain Plasmodium transmission.

15.
Article in English | MEDLINE | ID: mdl-32179528

ABSTRACT

The continuous spread of antimalarial drug resistance is a threat to current chemotherapy efficacy. Therefore, characterizing the genetic diversity of drug resistance markers is needed to follow treatment effectiveness and further update control strategies. Here, we genotyped Plasmodium falciparum resistance gene markers associated with sulfadoxine-pyrimethamine (SP) and artemisinin-based combination therapy (ACT) in isolates from pregnant women in Ghana. The prevalence of the septuple IRN I- A/FG K GS/Tpfdhfr/pfdhps haplotypes, including the pfdhps A581G and A613S/T mutations, was high at delivery among post-SP treatment isolates (18.2%) compared to those of first antenatal care (before initiation of intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine [IPTp-SP]; 6.1%; P = 0.03). Regarding the pfk13 marker gene, two nonsynonymous mutations (N458D and A481C) were detected at positions previously related to artemisinin resistance in isolates from Southeast Asia. These mutations were predicted in silico to alter the stability of the pfk13 propeller-encoding domain. Overall, these findings highlight the need for intensified monitoring and surveillance of additional mutations associated with increased SP resistance as well as emergence of resistance against artemisinin derivatives.


Subject(s)
Antimalarials , Malaria, Falciparum , Parasites , Pharmaceutical Preparations , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Combinations , Drug Resistance/genetics , Female , Ghana , Humans , Malaria, Falciparum/drug therapy , Plasmodium falciparum/genetics , Pregnancy , Pregnant Women , Protozoan Proteins/therapeutic use , Pyrimethamine/pharmacology , Pyrimethamine/therapeutic use , Sulfadoxine/pharmacology , Sulfadoxine/therapeutic use , Tetrahydrofolate Dehydrogenase/genetics
16.
Sci Rep ; 10(1): 1498, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32001728

ABSTRACT

Despite significant progress in controlling malaria, the disease remains a global health burden. The intricate interactions the parasite Plasmodium falciparum has with its host allows it to grow and multiply in human erythrocytes. The mechanism by which P. falciparum merozoites invade human erythrocytes is complex, involving merozoite proteins as well as erythrocyte surface proteins. Members of the P. falciparum reticulocyte binding-like protein homolog (PfRh) family of proteins play a pivotal role in merozoite invasion and hence are important targets of immune responses. Domains within the PfRh2b protein have been implicated in its ability to stimulate natural protective antibodies in patients. More specifically, a 0.58 kbp deletion, at the C-terminus has been reported in high frequencies in Senegalese and Southeast Asian parasite populations, suggesting a possible role in immune evasion. We analysed 1218 P. falciparum clinical isolates, and the results show that this deletion is present in Ghanaian parasite populations (48.5% of all isolates), with Kintampo (hyper-endemic, 53.2%), followed by Accra (Hypo-endemic, 50.3%), Cape Coast (meso-endemic, 47.9%) and Sogakope (meso-endemic, 43.15%). Further analysis of parasite genomes stored in the MalariaGEN database revealed that the deletion variant was common across transmission areas globally, with an overall frequency of about 27.1%. Interestingly, some parasite isolates possessed mixed PfRh2b deletion and full-length alleles. We further showed that levels of antibodies to the domain of PfRh2 protein were similar to antibody levels of PfRh5, indicating it is less recognized by the immune system.


Subject(s)
Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Adolescent , Adult , Aged , Amino Acid Sequence , Animals , Antibodies, Protozoan/blood , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/immunology , Child , Child, Preschool , Cohort Studies , Cross-Sectional Studies , Erythrocytes/parasitology , Female , Gene Dosage , Gene Duplication , Genes, Protozoan , Ghana/epidemiology , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Immune Evasion/genetics , Infant , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Male , Merozoites/genetics , Merozoites/immunology , Middle Aged , Plasmodium falciparum/immunology , Protein Domains , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Sequence Deletion , Sequence Homology, Amino Acid , Young Adult
17.
PLoS One ; 15(2): e0228177, 2020.
Article in English | MEDLINE | ID: mdl-32040522

ABSTRACT

BACKGROUND: Sterile protection against malaria, most likely mediated by parasite-specific CD8+ T cells, has been achieved by attenuated sporozoite vaccination of animals as well as malaria-naïve and malaria-exposed subjects. The circumsporozoite protein (CSP)-based vaccine, RTS,S, shows low efficacy partly due to limited CD8+ T cell induction, and inclusion of such epitopes could improve RTS,S. This study assessed 8-10mer CSP peptide epitopes, present in predicted or previously positive P. falciparum 3D7 CSP 15mer overlapping peptide pools, for their ability to induce CD8+ T cell IFN-γ responses in natural malaria-exposed subjects. METHODS: Cryopreserved PBMCs from nine HLA-typed subjects were stimulated with 23 8-10mer CSP peptides from the 3D7 parasite in IFN-É£ ELISpot assays. The CD8+ T cell specificity of IFN-γ responses was confirmed in ELISpot assays using CD8+ T cell-enriched PBMC fractions after CD4+ cell depletion. RESULTS: Ten of 23 peptide epitopes elicited responses in whole PBMCs from five of the nine subjects. Four peptides tested positive in CD8+ T cell-enriched PBMCs from two previously positive responders and one new subject. All four immunodominant peptides are restricted by globally common HLA supertypes (A02, A03, B07) and mapped to regions of the CSP antigen with limited or no reported polymorphism. Association of these peptide-specific responses with anti-malarial protection remains to be confirmed. CONCLUSIONS: The relatively conserved nature of the four identified epitopes and their binding to globally common HLA supertypes makes them good candidates for inclusion in potential multi-epitope malaria vaccines.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Amino Acid Sequence , CD8-Positive T-Lymphocytes/drug effects , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/drug effects , Interferon-gamma/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology
19.
Sci Rep ; 9(1): 19034, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31836735

ABSTRACT

Despite the clinically proven advantages of intermittent preventive treatment of malaria in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP), utilisation has been low in many African countries. To increase uptake and achieve the desired effect, the World Health Organization revised the policy to a monthly administration. Assessing the coverage and impact of the revised policy on pregnancy and neonatal outcomes is, therefore, a necessity. A 2-parallel cross-sectional hospital-based study was carried out among pregnant women attending first antenatal care (ANC) and delivery. Maternal and cord blood samples were assayed for malaria parasites by quantitative PCR targeting both the 18S rDNA and the acidic terminal segment of Plasmodium falciparum var genes, and plasma SP levels were measured by liquid chromatography coupled to tandem mass spectrometry. Parasite prevalence was similar between the two study sites but decreased significantly between the first ANC (9% or 43%) and delivery (4% or 11%) based on the qPCR target. At delivery, 64.5% of women received ≥3 IPTp-SP dose, 15.5% received 2 doses and 6% had 1 dose. Taking ≥3 IPTp-SP doses was associated with an average birth weight increase of more than 0.165 kg. IPTp-SP uptake was associated with plasma SP level at delivery (OR = 32.3, p ≤ 0.005, 95% CI (13.3;78.4) for those that reported ≥3 IPTp-SP doses) while the same trend of improved birth weight was observed with high plasma SP levels. The new IPTp policy is well implemented and well utilised by women in the sites considered in this study and translates to the improved birth weight observed. This study confirms the interest and the clinical benefit expected from this policy change.


Subject(s)
Birth Weight/physiology , Malaria/prevention & control , Pregnancy Complications, Parasitic/prevention & control , Adolescent , Adult , Cohort Studies , Drug Combinations , Female , Ghana/epidemiology , Humans , Linear Models , Malaria/blood , Malaria/drug therapy , Malaria/epidemiology , Middle Aged , Multivariate Analysis , Plasmodium falciparum , Pregnancy , Pregnancy Complications, Parasitic/blood , Pregnancy Complications, Parasitic/drug therapy , Pregnancy Complications, Parasitic/epidemiology , Prevalence , Pyrimethamine/blood , Pyrimethamine/therapeutic use , Sulfadoxine/blood , Sulfadoxine/therapeutic use , Young Adult
20.
Infect Immun ; 87(10)2019 10.
Article in English | MEDLINE | ID: mdl-31308082

ABSTRACT

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is an important malaria virulence factor. The protein family can be divided into clinically relevant subfamilies. ICAM-1-binding group A PfEMP1 proteins also bind endothelial protein C receptor and have been associated with cerebral malaria in children. IgG to these PfEMP1 proteins is acquired later in life than that to group A PfEMP1 not binding ICAM-1. The kinetics of acquisition of IgG to group B and C PfEMP1 proteins binding ICAM-1 is unclear and was studied here. Gene sequences encoding group B and C PfEMP1 with DBLß domains known to bind ICAM-1 were used to identify additional binders. Levels of IgG specific for DBLß domains from group A, B, and C PfEMP1 binding or not binding ICAM-1 were measured in plasma from Ghanaian children with or without malaria. Seven new ICAM-1-binding DBLß domains from group B and C PfEMP1 were identified. Healthy children had higher levels of IgG specific for ICAM-1-binding DBLß domains from group A than from groups B and C. However, the opposite pattern was found in children with malaria, particularly among young patients. Acquisition of IgG specific for DBLß domains binding ICAM-1 differs between PfEMP1 groups.


Subject(s)
Antibodies, Protozoan/biosynthesis , Immunoglobulin G/biosynthesis , Intercellular Adhesion Molecule-1/genetics , Malaria, Cerebral/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/genetics , Child , Child, Preschool , Erythrocytes/immunology , Erythrocytes/parasitology , Female , Gene Expression , Ghana , Humans , Infant , Intercellular Adhesion Molecule-1/immunology , Malaria, Cerebral/genetics , Malaria, Cerebral/parasitology , Malaria, Cerebral/pathology , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Male , Plasmodium falciparum/pathogenicity , Polymorphism, Genetic , Protein Binding , Protein Domains , Protozoan Proteins/classification , Protozoan Proteins/immunology , Seasons , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...