Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Epidemiol ; 190(2): 265-276, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33524118

ABSTRACT

Polyunsaturated fatty acids (PUFAs) are critical for brain development and have been linked with neurodevelopmental outcomes. We conducted a population-based case-control study in California to examine the association between PUFAs measured in midpregnancy serum samples and autism spectrum disorder (ASD) in offspring. ASD cases (n = 499) were identified through the California Department of Developmental Services and matched to live-birth population controls (n = 502) on birth month, year (2010 or 2011), and sex. Logistic regression models were used to examine crude and adjusted associations. In secondary analyses, we examined ASD with and without co-occurring intellectual disability (ID; n = 67 and n = 432, respectively) and effect modification by sex and ethnicity. No clear patterns emerged, though there was a modest inverse association with the top quartile of linoleic acid level (highest quartile vs. lowest: adjusted odds ratio = 0.74, 95% confidence interval: 0.49, 1.11; P for trend = 0.10). Lower levels of total and ω-3 PUFAs were associated with ASD with ID (lowest decile of total PUFAs vs. deciles 4-7: adjusted odds ratio = 2.78, 95% confidence interval: 1.13, 6.82) but not ASD without ID. We did not observe evidence of effect modification by the factors examined. These findings do not suggest a strong association between midpregnancy PUFA levels and ASD. In further work, researchers should consider associations with ASD with ID and in other time windows.


Subject(s)
Autism Spectrum Disorder/epidemiology , Fatty Acids, Unsaturated/blood , Intellectual Disability/epidemiology , Pregnancy Trimester, Second/blood , Autism Spectrum Disorder/ethnology , Birth Weight , California/epidemiology , Case-Control Studies , Child , Child, Preschool , Female , Gestational Age , Humans , Intellectual Disability/ethnology , Male , Odds Ratio , Pregnancy , Sex Factors , Socioeconomic Factors
2.
Bioorg Med Chem ; 27(20): 115050, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31474471

ABSTRACT

C4-phenylthio ß-lactams are a new family of antibacterial agents that have activity against two phylogenetically distant bacteria - Mycobacterium tuberculosis (Mtb) and Moraxella catarrhalis (M. cat). These compounds are effective against ß-lactamase producing Mtb and M. cat unlike the clinically relevant ß-lactam antibiotics. The structure-activity relationship for the C4 phenylthio ß-lactams has not yet been completely defined. Earlier efforts in our laboratories established that the C4-phenylthio substituent is essential for antimicrobial activity, while the N1 carbamyl substituent plays a more subtle role. In this present study, we investigated the role that the stereochemistry at C4 plays in these compounds' antibacterial activity. This was achieved by synthesizing and testing the antimicrobial activity of diastereomers with a chiral carbamyl group at N1. Our findings indicate that a strict stereochemistry for the C4-phenylthio ß-lactams is not required to obtain optimal anti-Mtb and anti-M. cat activity. Furthermore, the structure-bioactivity profiles more closely relate to the electronic requirement of the phenylthiogroup. In addition, the MICs of Mtb are sensitive to growth medium composition. Select compounds showed activity against non-replicating and multi-drug resistant Mtb.


Subject(s)
Anti-Bacterial Agents/pharmacology , Moraxella catarrhalis/drug effects , Mycobacterium tuberculosis/drug effects , Sulfhydryl Compounds/pharmacology , beta-Lactams/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Survival/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Resistance, Bacterial/drug effects , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Moraxella catarrhalis/growth & development , Mycobacterium tuberculosis/growth & development , Structure-Activity Relationship , Sulfhydryl Compounds/chemical synthesis , Sulfhydryl Compounds/chemistry , beta-Lactams/chemical synthesis , beta-Lactams/chemistry
3.
Cell Rep ; 28(8): 1971-1980.e8, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31433975

ABSTRACT

Reprogrammed metabolism and cell cycle dysregulation are two cancer hallmarks. p16 is a cell cycle inhibitor and tumor suppressor that is upregulated during oncogene-induced senescence (OIS). Loss of p16 allows for uninhibited cell cycle progression, bypass of OIS, and tumorigenesis. Whether p16 loss affects pro-tumorigenic metabolism is unclear. We report that suppression of p16 plays a central role in reprogramming metabolism by increasing nucleotide synthesis. This occurs by activation of mTORC1 signaling, which directly mediates increased translation of the mRNA encoding ribose-5-phosphate isomerase A (RPIA), a pentose phosphate pathway enzyme. p16 loss correlates with activation of the mTORC1-RPIA axis in multiple cancer types. Suppression of RPIA inhibits proliferation only in p16-low cells by inducing senescence both in vitro and in vivo. These data reveal the molecular basis whereby p16 loss modulates pro-tumorigenic metabolism through mTORC1-mediated upregulation of nucleotide synthesis and reveals a metabolic vulnerability of p16-null cancer cells.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Nucleotides/metabolism , Aldose-Ketose Isomerases/metabolism , Animals , Cell Line , Cellular Senescence , Gene Knockdown Techniques , Humans , Male , Mice, SCID , Pentose Phosphate Pathway , Protein Biosynthesis
4.
Anal Biochem ; 568: 65-72, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30605633

ABSTRACT

Quantification of cellular deoxyribonucleoside mono- (dNMP), di- (dNDP), triphosphates (dNTPs) and related nucleoside metabolites are difficult due to their physiochemical properties and widely varying abundance. Involvement of dNTP metabolism in cellular processes including senescence and pathophysiological processes including cancer and viral infection make dNTP metabolism an important bioanalytical target. We modified a previously developed ion pairing reversed phase chromatography-mass spectrometry method for the simultaneous quantification and 13C isotope tracing of dNTP metabolites. dNMPs, dNDPs, and dNTPs were chromatographically resolved to avoid mis-annotation of in-source fragmentation. We used commercially available 13C15N-stable isotope labeled analogs as internal standards and show that this isotope dilution approach improves analytical figures of merit. At sufficiently high mass resolution achievable on an Orbitrap mass analyzer, stable isotope resolved metabolomics allows simultaneous isotope dilution quantification and 13C isotope tracing from major substrates including 13C-glucose. As a proof of principle, we quantified dNMP, dNDP and dNTP pools from multiple cell lines. We also identified isotopologue enrichment from glucose corresponding to ribose from the pentose-phosphate pathway in dNTP metabolites.


Subject(s)
Deoxyribonucleotides/analysis , Indicator Dilution Techniques , Mass Spectrometry , Carbon Isotopes , Cells, Cultured , Chromatography, Liquid , Deoxyribonucleotides/metabolism , Humans , Isotope Labeling , Nitrogen Isotopes
5.
J Pharmacol Exp Ther ; 362(2): 306-318, 2017 08.
Article in English | MEDLINE | ID: mdl-28576974

ABSTRACT

Lecithin:cholesterol acyltransferase (LCAT) catalyzes plasma cholesteryl ester formation and is defective in familial lecithin:cholesterol acyltransferase deficiency (FLD), an autosomal recessive disorder characterized by low high-density lipoprotein, anemia, and renal disease. This study aimed to investigate the mechanism by which compound A [3-(5-(ethylthio)-1,3,4-thiadiazol-2-ylthio)pyrazine-2-carbonitrile], a small heterocyclic amine, activates LCAT. The effect of compound A on LCAT was tested in human plasma and with recombinant LCAT. Mass spectrometry and nuclear magnetic resonance were used to determine compound A adduct formation with LCAT. Molecular modeling was performed to gain insight into the effects of compound A on LCAT structure and activity. Compound A increased LCAT activity in a subset (three of nine) of LCAT mutations to levels comparable to FLD heterozygotes. The site-directed mutation LCAT-Cys31Gly prevented activation by compound A. Substitution of Cys31 with charged residues (Glu, Arg, and Lys) decreased LCAT activity, whereas bulky hydrophobic groups (Trp, Leu, Phe, and Met) increased activity up to 3-fold (P < 0.005). Mass spectrometry of a tryptic digestion of LCAT incubated with compound A revealed a +103.017 m/z adduct on Cys31, consistent with the addition of a single hydrophobic cyanopyrazine ring. Molecular modeling identified potential interactions of compound A near Cys31 and structural changes correlating with enhanced activity. Functional groups important for LCAT activation by compound A were identified by testing compound A derivatives. Finally, sulfhydryl-reactive ß-lactams were developed as a new class of LCAT activators. In conclusion, compound A activates LCAT, including some FLD mutations, by forming a hydrophobic adduct with Cys31, thus providing a mechanistic rationale for the design of future LCAT activators.


Subject(s)
Cysteine/physiology , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Sulfhydryl Compounds/pharmacology , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Activation/physiology , Enzyme Activators/chemistry , Enzyme Activators/metabolism , Enzyme Activators/pharmacology , HEK293 Cells , Humans , Lecithin Cholesterol Acyltransferase Deficiency/metabolism , Models, Molecular , Phosphatidylcholine-Sterol O-Acyltransferase/chemistry , Sulfhydryl Compounds/chemistry
6.
Bioorg Med Chem ; 23(3): 632-47, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25549898

ABSTRACT

The prevalence of drug resistance in both clinical and community settings as a consequence of alterations of biosynthetic pathways, enzymes or cell wall architecture is a persistent threat to human health. We have designed, synthesized, and tested a novel class of non-transpeptidase, ß-lactamase resistant monocyclic ß-lactams that carry an arylthio group at C4. These thioethers exhibit inhibitory and cidal activity against serine ß-lactamase producing Mycobacterium tuberculosis wild type strain (Mtb) and multiple (n=8) ß-lactamase producing Moraxella catarrhalis clinical isolates.


Subject(s)
Anti-Bacterial Agents/pharmacology , Moraxella catarrhalis/drug effects , Mycobacterium tuberculosis/drug effects , beta-Lactams/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Moraxella catarrhalis/enzymology , Mycobacterium tuberculosis/enzymology , beta-Lactams/chemistry , beta-Lactams/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...