Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Science ; 383(6680): 298-305, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38236960

ABSTRACT

Two powerful earthquakes struck Türkiye on 6 February 2023. The initial rupture was on the Dead Sea fault zone, yet maximum displacements and energy release [moment magnitude (Mw) 7.8] occurred 24 seconds later when rupture transferred to the East Anatolian fault zone (EAFZ). More than 7 hours later, a Mw 4.5 aftershock at the junction of the EAFZ with the east-west striking Çardak-Sürgü fault was followed 86 minutes later by the second large (Mw 7.5) earthquake, suggesting a causal relationship. We provide quantitative ground and aerial documentation of surface offsets and kinematics from the slipped faults, providing important data on surface deformation during large continental strike-slip earthquakes, rupture propagation mechanisms, and how slip may be transferred between complex fault systems. We also provide insight into how slip along linked fault systems accommodates global plate motions.

2.
Nat Commun ; 14(1): 7997, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042882

ABSTRACT

The Earth's interior and surficial systems underwent dramatic changes during the Paleoproterozoic, but the interaction between them remains poorly understood. Rocks deposited in orogenic foreland basins retain a record of the near surface to deep crustal processes that operate during subduction to collision and provide information on the interaction between plate tectonics and surface responses through time. Here, we document the depositional-to-deformational life cycle of a Paleoproterozoic foreland succession from the North China Craton. The succession was deposited in a foreland basin following ca. 2.50-2.47 Ga Altaid-style arc-microcontinent collision, and then converted to a fold-and-thrust belt at ca. 2.0-1.8 Ga due to Himalayan-style continent-continent collision. These two periods correspond to the assembly of supercratons in the late Archean and of the Paleoproterozoic supercontinent Columbia, respectively, which suggests that similar basins may have been common at the periphery of other cratons. The multiple stages of orogenesis and accompanying tectonic denudation and silicate weathering, as recorded by orogenic foreland basins, likely contributed to substantial changes in the hydrosphere, atmosphere, and biosphere known to have occurred during the Paleoproterozoic.

3.
Sci Adv ; 9(50): eadi2134, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100583

ABSTRACT

The lithosphere, as the outermost solid layer of our planet, preserves a progressively more fragmentary record of geological events and processes from Earth's history the further back in time one looks. Thus, the evolution of lithospheric thickness and its cascading impacts in Earth's tectonic system are presently unknown. Here, we track the lithospheric thickness history using machine learning based on global lithogeochemical data of basalt. Our results demonstrate that four marked lithospheric thinning events occurred during the Paleoarchean, early Paleoproterozoic, Neoproterozoic, and Phanerozoic with intermediate thickening scenarios. These events respectively correspond to supercontinent/supercraton breakup and assembly periods. Causality investigation further indicates that crustal metamorphic and deformation styles are the feedback of lithospheric thickness. Cross-correlation between lithospheric thickness and metamorphic thermal gradients records the transition from intraoceanic subduction systems to continental margin and intraoceanic in the Paleoarchean and Mesoarchean and a progressive emergence of large thick continents that allow supercontinent growth, which promoted assembly of the first supercontinent during the Neoarchean.

4.
Natl Sci Rev ; 10(9): nwad137, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37565186

ABSTRACT

Decades of research using remotely sensed data have extracted evidence for the presence of an ocean in the northern lowlands of Mars in the Hesperian (∼3.3 Ga), but these claims have remained controversial due to the lack of in situ analysis of the associated geologic unit, the Vastitas Borealis Formation (VBF). The Tianwen-1/Zhurong rover was targeted to land within the VBF near its southern margin and has traversed almost 2 km southward toward the interpreted shoreline. We report here on the first in situ analysis of the VBF that reveals sedimentary structures and features in surface rocks that suggest that the VBF was deposited in a marine environment, providing direct support for the existence of an ancient (Hesperian) ocean on Mars.

5.
Natl Sci Rev ; 10(2): nwac235, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36817838

ABSTRACT

We compare and contrast the materials and mechanisms of continental crustal growth in the largest preserved regions of Phanerozoic and Archean juvenile additions to the crust, to test for similarities or differences in the formation of continents through time. We accomplish this through a comparison of map patterns, lithological contents, and structural and metamorphic evolution of the Phanerozoic Altaid orogenic system of Asia, with the Archean Superior Province of the North American Craton, using a method termed comparative orotomy. Both orogenic systems consist of collages of curvilinear belts of eroded arcs, some older continental slivers, and vast tracts of former subduction/accretionary complexes. These contain numerous shreds of portions of the ophiolite suite, slivers of island and continental arcs, and accreted oceanic plateau, all intruded by multiple magmatic suites during or between multiple deformation events, then sliced by large transcurrent fault systems and bent into large oroclinal structures. We make this comparison because the Superior Province is a typical Archean craton that was later, in the Paleoproterozoic, incorporated into the larger North American Craton, and has occupied a central position in several supercontinents (e.g. Kenorland and Nuna, which then formed the core of Columbia, Rodinia, Laurentia and Pangea) during its longevity. Since it is the largest single fragment of Archean continental cratonic lithosphere preserved on Earth, the Superior Province is widely regarded as a testing ground for how Earth's continental crust was formed. Likewise, the Altaids encompass the largest region of crustal growth for the Phanerozoic. Our comparison with the Altaids is needed, as in recent years many myths about how the planet may have responded to higher heat production and flow in the Archean have emerged, because of trends in the science where regional geology is ignored in favor of numerical models, isotopic proxies for assumed models of chemical behavior for crust-forming or tectonic processes, or comparisons with other-worldly bodies that bear little resemblance to our hydrous Earth. Thus, we return to the geological record, and here describe the map patterns, lithological associations, structural patterns and evolution of both the Altaids and Superior Province, showing how comparative tectonics, orotomy, is useful in the absence of meaningful paleomagnetic or biostratigraphic data. We pay particular attention to the style of preservation of disaggregated members of the ophiolite suite (ophirags) and their relationships with other tectonic units, and to the widespread but largely overlooked role of late-stage major transcurrent motions and structural slicing of both Archean and Phanerozoic orogenic systems in defining the present-day architecture of both orogenic systems.

6.
Nat Commun ; 13(1): 7821, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36535961

ABSTRACT

Significant changes in tectonic style and climate occurred from the late Archaean to early Proterozoic when continental growth and emergence provided opportunities for photosynthetic life to proliferate by the initiation of the Great Oxidation Event (GOE). In this study, we report a Neoarchaean passive-margin-type sequence (2560-2500 million years ago) from the Precambrian basement of China that formed in an accretionary orogen. Tectonostratigraphic and detrital zircon analysis reveal that thermal subsidence on the backside of a recently amalgamated oceanic archipelago created a quiet, shallow water environment, marked by deposition of carbonates, shales, and shallow water sediments, likely hosts to early photosynthetic microbes. Distinct from the traditional understanding of passive margins generated by continental rifting, post-collisional subsidence of archipelago margins represents a novel stable niche, signalling initial continental maturity and foreshadowing great changes at the Archaean-Proterozoic boundary.


Subject(s)
Geologic Sediments , Oxygen , Oxygen/analysis , Oceans and Seas , Minerals , Water
7.
Nat Commun ; 13(1): 6450, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36307406

ABSTRACT

The coexistence of divergent (spreading ridge) and convergent (subduction zone) plate boundaries at which lithosphere is respectively generated and destroyed is the hallmark of plate tectonics. Here, we document temporally- and spatially-associated Neoarchean (2.55-2.51 Ga) rock assemblages with mid-ocean ridge and supra-subduction-zone origins from the Angou Complex, southern North China Craton. These assemblages record seafloor spreading and contemporaneous subduction initiation and mature arc magmatism, respectively, analogous to modern divergent and convergent plate boundary processes. Our results provide direct evidence for lateral plate motions in the late Neoarchean, and arguably the operation of plate tectonics, albeit with warmer than average Phanerozoic subduction geotherms. Further, we surmise that plate tectonic processes played an important role in shaping Earth's surficial environments during the Neoarchean and Paleoproterozoic.

8.
Proc Natl Acad Sci U S A ; 119(39): e2201226119, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36126101

ABSTRACT

Continental, orogenic, and oceanic lithospheric mantle embeds sizeable parcels of exotic cratonic lithospheric mantle (CLM) derived from distant, unrelated sources. This hints that CLM recycling into the mantle and its eventual upwelling and relamination at the base of younger plates contribute to the complex structure of the growing lithosphere. Here, we use numerical modeling to investigate the fate and survival of recycled CLM in the ambient mantle and test the viability of CLM relamination under Hadean to present-day mantle temperature conditions and its role in early lithosphere evolution. We show that the foundered CLM is partially mixed and homogenized in the ambient mantle; then, as thermal negative buoyancy vanishes, its long-lasting compositional buoyancy drives upwelling, relaminating unrelated growing lithospheric plates and contributing to differentiation under cratonic, orogenic, and oceanic regions. Parts of the CLM remain in the mantle as diffused depleted heterogeneities at multiple scales, which can survive for billions of years. Relamination is maximized for high depletion degrees and mantle temperatures compatible with the early Earth, leading to the upwelling and underplating of large volumes of foundered CLM, a process we name massive regional relamination (MRR). MRR explains the complex source, age, and depletion heterogeneities found in ancient cratonic lithospheric mantle, suggesting this may have been a key component of the construction of continents in the early Earth.

10.
Proc Natl Acad Sci U S A ; 119(15): e2117529119, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35377787

ABSTRACT

SignificanceThe onset time of plate tectonics is highly debated in the Earth sciences. A key indicator of modern-style plate tectonics, with deep subduction of oceanic plates, is the presence of eclogite (oceanic crust metamorphosed at high-pressure and low-temperature) in orogenic belts. Since no orogenic eclogites older than 2.1 billion y are currently documented, many scientists argue that modern plate tectonics started only 2.1 billion y ago (Ga). We document an Archean orogenic eclogite, providing robust evidence that subduction of oceanic crust reached to at least 65 to 70 km in depth at circa 2.5 Ga. This extends the known age of subduction-related eclogite-facies metamorphism back 400 My, showing that modern-style plate tectonics operated by the close of the Archean.

11.
Nat Commun ; 12(1): 6172, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34702843

ABSTRACT

Whether modern-style plate tectonics operated on early Earth is debated due to a paucity of definitive records of large-scale plate convergence, subduction, and collision in the Archean geological record. Archean Alpine-style sub-horizontal fold/thrust nappes in the Precambrian basement of China contain a Mariana-type subduction-initiation sequence of mid-ocean ridge basalt blocks in a 1600-kilometer-long mélange belt, overthrusting picritic-boninitic and island-arc tholeiite bearing nappes, in turn emplaced over a passive margin capping an ancient Archean continental fragment. Picrite-boninite and tholeiite units are 2698 ± 30 million years old marking the age of subduction initiation, with nappes emplaced over the passive margin at 2520 million years ago. Here, we show the life cycle of the subduction zone and ocean spanned circa 178 million years; conservative plate velocities of 2 centimeters per year yield a lateral transport distance of subducted oceanic crust of 3560 kilometers, providing direct positive evidence for horizontal plate tectonics in the Archean.

12.
Sci Rep ; 11(1): 6486, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33753832

ABSTRACT

Earthquakes are a consequence of the motions of the planet's tectonic plates, yet predicting when and where they may occur, and how to prepare remain some of the shortcomings of using scientific knowledge to protect human life. A devastating Mw 7.0 earthquake on October 30, 2020, offshore Samos Island, Greece was a consequence of the Aegean and Anatolian upper crust being pulled apart by north-south extensional stresses resulting from slab rollback, where the African plate is subducting northwards beneath Eurasia, while the slab is sinking by gravitational forces, causing it to retreat southwards. Since the retreating African slab is coupled with the overriding plate, it tears the upper plate apart as it retreats, breaking it into numerous small plates with frequent earthquakes along their boundaries. Historical earthquake swarms and deformation of the upper plate in the Aegean have been associated with massive volcanism and cataclysmic devastation, such as the Mw 7.7 Amorgos earthquake in July 1956 between the islands of Naxos and Santorini (Thera). Even more notable was the eruption of Santorini 3650 years ago, which contributed to the fall of the Minoan civilization. The Samos earthquake highlights the long historical lack of appreciation of links between deep tectonic processes and upper crustal deformation and geological hazards, and is a harbinger of future earthquakes and volcanic eruptions, establishing a basis for studies to institute better protection of infrastructure and upper plate cultures in the region.

13.
Nat Commun ; 5: 5604, 2014 Dec 17.
Article in English | MEDLINE | ID: mdl-25517619

ABSTRACT

We report partial melting of an ultrahigh pressure eclogite in the Mesozoic Sulu orogen, China. Eclogitic migmatite shows successive stages of initial intragranular and grain boundary melt droplets, which grow into a three-dimensional interconnected intergranular network, then segregate and accumulate in pressure shadow areas and then merge to form melt channels and dikes that transport magma to higher in the lithosphere. Here we show, using zircon U-Pb dating and petrological analyses, that partial melting occurred at 228-219 Myr ago, shortly after peak metamorphism at 230 Myr ago. The melts and residues are complimentarily enriched and depleted in light rare earth element (LREE) compared with the original rock. Partial melting of deeply subducted eclogite is an important process in determining the rheological structure and mechanical behaviour of subducted lithosphere and its rapid exhumation, controlling the flow of deep lithospheric material, and for generation of melts from the upper mantle, potentially contributing to arc magmatism and growth of continental crust.

SELECTION OF CITATIONS
SEARCH DETAIL
...