Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 25(16): 165704, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24675237

ABSTRACT

For the first time, new epitaxial graphene nano-structures resembling charged 'bubbles' and 'domes' are reported. A strong influence, arising from the change in morphology, on the graphene layer's electronic, mechanical and optical properties has been shown. The morphological properties of these structures have been studied with atomic force microscopy (AFM), ultrasonic force microscopy (UFM) and Raman spectroscopy. After initial optical microscopy observation of the graphene, a detailed description of the surface morphology, via AFM and nanomechanical UFM measurements, was obtained. Here, graphene nano-structures, domes and bubbles, ranging from a few tens of nanometres (150­200 nm) to a few µm in size have been identified. The AFM topographical and UFM stiffness data implied the freestanding nature of the graphene layer within the domes and bubbles, with heights on the order of 5­12 nm. Raman spectroscopy mappings of G and 2D bands and their ratio confirm not only the graphene composition of these structures but also the existence of step bunching, defect variations and the carrier density distribution. In particular, inside the bubbles and substrate there arises complex charge redistribution; in fact, the graphene bubble­substrate interface forms a charged capacitance. We have determined the strength of the electric field inside the bubble­substrate interface, which may lead to a minigap of the order of 5 meV opening for epitaxial graphene grown on 4H-SiC face-terminated carbon.

2.
J Phys Condens Matter ; 25(15): 155602, 2013 Apr 17.
Article in English | MEDLINE | ID: mdl-23507775

ABSTRACT

The multi-order Raman scattering is studied up to fourth order for a detwinned LaMnO3 crystal. Based on a comprehensive data analysis of the polarization-dependent Raman spectra, we show that the anomalous features in the multi-order scattering could be the sidebands on the low-energy mode at about 25 cm(-1). We suggest that this low-energy mode stems from the tunneling transition between the potential energy minima arising near the Jahn-Teller Mn(3+) ion due to the lattice anharmonicity and that the multi-order scattering is activated by this low-energy electronic motion. The sidebands are dominated by the oxygen contribution to the phonon density-of-states, however, there is an admixture of an additional component, which may arise from coupling between the low-energy electronic motion and the vibrational modes.

SELECTION OF CITATIONS
SEARCH DETAIL
...