Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 13(1): 10608, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37391517

ABSTRACT

Despite many modern wastewater treatment solutions, the most common is still the use of activated sludge (AS). Studies indicate that the microbial composition of AS is most often influenced by the raw sewage composition (especially influent ammonia), biological oxygen demand, the level of dissolved oxygen, technological solutions, as well as the temperature of wastewater related to seasonality. The available literature mainly refers to the relationship between AS parameters or the technology used and the composition of microorganisms in AS. However, there is a lack of data on the groups of microorganisms leaching into water bodies whose presence is a signal for possible changes in treatment technology. Moreover, sludge flocs in the outflow contain less extracellular substance (EPS) which interferes microbial identification. The novelty of this article concerns the identification and quantification of microorganisms in the AS and in the outflow by fluorescence in situ hybridization (FISH) method from two full-scale wastewater treatment plants (WWTPs) in terms of 4 key groups of microorganisms involved in the wastewater treatment process in the context of their potential technological usefulness. The results of the study showed that Nitrospirae, Chloroflexi and Ca. Accumulibacter phosphatis in treated wastewater reflect the trend in abundance of these bacteria in activated sludge. Increased abundance of betaproteobacterial ammonia-oxidizing bacteria and Nitrospirae in the outflow were observed in winter. Principal component analysis (PCA) showed that loadings obtained from abundance of bacteria in the outflow made larger contributions to the variance in the PC1 factorial axis, than loadings obtained from abundance of bacteria from activated sludge. PCA confirmed the reasonableness of conducting studies not only in the activated sludge, but also in the outflow to find correlations between technological problems and qualitative and quantitative changes in the outflow microorganisms.


Subject(s)
Betaproteobacteria , Sewage , Wastewater , Ammonia , In Situ Hybridization, Fluorescence , Prevalence , Seasons , Bacteria/genetics
2.
Sci Total Environ ; 845: 157224, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35835188

ABSTRACT

This paper presents the study concerning long-term effects of a full scale hydrocyclone unit implemented in a continuous flow long sludge age system, on sedimentation, treatment efficiency and sludge morphology. The research concentrates on identifying the mechanisms of sludge behaviour within the system. The gravimetric selection of activated sludge via a hydrocyclone is a recent development for enhancing sludge separation, where heavier flocs are retained in the system, and lighter ones are discarded as waste sludge. The effects of implementing hydroclyclones were analysed with the use of SEM imagining and fractal dimensioning through the frequent assessment of sludge settling capabilities, effluent quality, and floc properties. Over the course of 60 weeks of hydrocyclone operation, sedimentation efficiency varied significantly. Sludge volume index values of 40 mL/g, achieved during the warm season, were not sustained when the temperature decreased and an overgrowth of filamentous bacteria occurred. Good settling efficiency was also observed in batch tests, where settling velocity of experimental sludge was app. 1 m/h higher than for the reference train at the same concentrations. This was confirmed during wet weather, as the experimental train sustained safe sludge blanket height in secondary clarifiers. SEM imaging and fractal dimension analysis revealed that the underflow that returned to the system had a more compact and spherical shape, which led to an increased content of granule-like particles in the reactor. The presence of flocs with a diameter exceeding 900 µm in the underflow, which is not observed in the feed, indicated agglomeration within the hydrocyclone. This is contradictory to most of the literature data coming from laboratory experiments. This phenomenon was attributed to differences in the size and geometry of the used hydrocyclones, and the potential process mechanism was presented.


Subject(s)
Sewage , Waste Disposal, Fluid , Bacteria , Bioreactors , Fractals , Waste Disposal, Fluid/methods , Weather
3.
Article in English | MEDLINE | ID: mdl-35627522

ABSTRACT

It is often only at the operation stage of a wastewater treatment plant that there is a need to adjust the treatment process in terms of variable hydraulic capacity, increased pollutant load, high/low concentration of suspended biomass, or the unfavorable phenomenon of reduced sedimentation capacity of the activated sludge. One of the ways to improve the treatment process efficiency is to increase the biologically active surface by using bio-carriers in the form of fibers, materials, or bio-balls. This paper presents the results of a wastewater treatment plant operation during the period of six months after the implementation of the integrated fixed-film activated sludge (IFAS) technology. The research showed that microorganisms developed both in the activated sludge and on the fibers, positively influencing the activated sludge condition. During the start-up of the IFAS process, ciliates predominated over the other species. However, as oxygen content was high (2 mg/dm3 and more) and textile beds were used, the protozoan population developed intensively, and small metazoans became increasingly common. Throughout the research period, nitrifying and phosphorus-accumulating bacteria were observed both in the activated sludge and on the fibers. Between the 59th and 184th day of operation, numerous microorganisms were detected on the fibers and in the activated sludge, testifying to low biological oxygen demand, good aerobic conditions for nitrification, and long sludge age. However, the process seemed to break down after day 72, when the occurrence of metazoan led to reduced sludge production; after day 88, chemical oxygen demand and total suspended solids in the outflow increased, and oligochaetes and rotifers dominated the suspended sludge and fibers. Results also showed that the textile bed and low ammonia concentration became an excellent substrate for the development of Stentor sp. With regard to chemical and biological oxygen demand, total nitrogen- and total phosphorus-effluent concentrations were mostly within the legally permissible limits throughout the 184 days of operation.


Subject(s)
Sewage , Water Purification , Animals , Biological Oxygen Demand Analysis , Bioreactors/microbiology , Phosphorus/analysis , Sewage/chemistry , Water Purification/methods
4.
Water Air Soil Pollut ; 229(10): 327, 2018.
Article in English | MEDLINE | ID: mdl-30294049

ABSTRACT

The light scattering method is a valuable tool for accessing particle size and structure mainly due to fast and the nonintrusive nature of the measurement. The method is based on a scattered intensity pattern and depends on particle volume, particle morphology, the light wavelength and the scattering angle. The light scattering model, for particles characterised by a fractal structure, is enabled with the use of the Rayleigh-Gans-Debye theory under constrained assumptions. The range of validity of the Rayleigh-Gans-Debye is limited when primary particles constituting aggregate have a size close to the wavelength. In this work, a range of particle sizes was characterised in order to achieve a better understanding of the relationship between flocs size and its fractal dimension. Hence, the width of the power law regime is discussed. What is more, a specific fractal dimension value of activated sludge flocs was found for each of the analysed wastewater treatment plant, which suggests that the spatial structure of suspensions constituting the activated sludge is an individual characteristic of each treatment facility. It has been shown that activated sludge consists of microflocs from the range of 1-10 µm, which constitute approximately 90% of all the population.

SELECTION OF CITATIONS
SEARCH DETAIL