Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Biochem Biophys ; 746: 109734, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37648010

ABSTRACT

In vivo protein synthesis is crucial for all domains of life. It is accomplished through translational machinery, and a key step is the translocation of tRNA-mRNA by elongation factor G (EF-G). Genome-based analysis revealed two EF-G encoding genes (S0885 and S2082) in the freshwater cyanobacterium model Synechococcus elongatus PCC7942. S0885 is the essential EF-G gene for photosynthesis. We generated a strain of S. elongatus PCC7942 that overexpressed S0885 (OX-S0885) to identify EF-G functionality. RT-PCR and Western blot analyses revealed increased transcriptional and translational levels in OX-S0885 at 10.5-13.5 and 2.0-3.0 fold, respectively. Overexpression of S0885 led to an increase in specific growth rate. Additionally, polysome-to-monosome ratio (P/M) and RNA-to-protein ratio (R/P) were elevated in OX-S0885 compared with the empty vector. Interestingly, R/P in OX-S0885 was retained at more than 70% under oxidative stress while R/P in the empty vector was severely depleted, suggesting the maintenance of translation. Thus, S0885 appeared to be the important target of oxidative stress because it was protected by the stress response system to maintain its function. These results suggest that cyanobacterial EF-G has a primary function in translation and an unrelated activity during stress conditions. These findings support the substantial role of EF-G in the formation and maintenance of cellular protein formation, and in the protection of the global translational mechanism under oxidative stress condition.


Subject(s)
Peptide Elongation Factor G , Synechococcus , Synechococcus/genetics , Blotting, Western , Protein Biosynthesis
2.
Microbiol Resour Announc ; 9(38)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32943563

ABSTRACT

This study reports on the complete genome sequence of Spirosoma sp. strain KCTC 42546, isolated from fresh water in a reservoir in South Korea. The genome contained genes for various glycosyl hydrolases, which are associated with degrading sugars and DNA-repairing enzymes.

3.
Mar Drugs ; 17(6)2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31159386

ABSTRACT

The utilization of microalgae as a source of carotenoid productions has gained increasing popularity due to its advantages, such as a relatively fast turnaround time. In this study, a newly discovered Coelastrum sp. TISTR 9501RE was characterized and investigated for its taxonomical identity and carotenoid profile. To the best of our knowledge, this report was the first to fully investigate the carotenoid profiles in a microalga of the genus Coelastrum. Upon use of limited nutrients as a stress condition, the strain was able to produce astaxanthin, canthaxanthin, and lutein, as the major carotenoid components. Additionally, the carotenoid esters were found to be all astaxanthin derivatives, and ß-carotene was not significantly present under this stress condition. Importantly, we also demonstrated that this practical stress condition could be combined with simple growing factors, such as ambient sunlight and temperature, to achieve even more focused carotenoid profiles, i.e., increased overall amounts of the aforementioned carotenoids with fewer minor components and chlorophylls. In addition, this green microalga was capable of tolerating a wide range of salinity. Therefore, this study paved the way for more investigations and developments on this fascinating strain, which will be reported in due course.


Subject(s)
Antioxidants/metabolism , Carotenoids/chemistry , Carotenoids/metabolism , Drug Discovery/methods , Microalgae/chemistry , Microalgae/physiology , Stress, Physiological/physiology , Sunlight , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...