Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys Rev ; 15(5): 1111-1125, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37975004

ABSTRACT

In this work, we analyze the information on the protein intermolecular interactions obtained from macromolecular diffusion. We have shown that the most hopeful results are given by our approach based on analysis of protein translational self-diffusion and collective diffusion obtained by dynamic light scattering and pulsed-field gradient NMR (PFG NMR) spectroscopy with the help of Vink's approach to analyze diffusion motion of particles by frictional formalism of non-equilibrium thermodynamics and the usage of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloid particles interactions in electrolyte solutions. Early we have shown that integration of Vink's theory with DLVO provides a reliable basis for uniform interpreting of PFG NMR and DLS experiments on concentration dependence of diffusion coefficients. Basic details of theoretical and mathematical procedures and a broad analysis of experimental attestation of proposed conception on proteins of various structural form, size, and shape are presented. In the present review, the main capabilities of our approach obtain the details of intermolecular interactions of proteins with different shapes, internal structures, and mass. The universality of Vink's approach is experimentally shown, which gives the appropriate description of experimental results for proteins of complicated structure and shape.

2.
Int J Mol Sci ; 24(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446325

ABSTRACT

Intracellular environment includes proteins, sugars, and nucleic acids interacting in restricted media. In the cytoplasm, the excluded volume effect takes up to 40% of the volume available for occupation by macromolecules. In this work, we tested several approaches modeling crowded solutions for protein diffusion. We experimentally showed how the protein diffusion deviates from conventional Brownian motion in artificial conditions modeling the alteration of medium viscosity and rigid spatial obstacles. The studied tracer proteins were globular bovine serum albumin and intrinsically disordered α-casein. Using the pulsed field gradient NMR, we investigated the translational diffusion of protein probes of different structures in homogeneous (glycerol) and heterogeneous (PEG 300/PEG 6000/PEG 40,000) solutions as a function of crowder concentration. Our results showed fundamentally different effects of homogeneous and heterogeneous crowded environments on protein self-diffusion. In addition, the applied "tracer on lattice" model showed that smaller crowding obstacles (PEG 300 and PEG 6000) create a dense net of restrictions noticeably hindering diffusing protein probes, whereas the large-sized PEG 40,000 creates a "less restricted" environment for the diffusive motion of protein molecules.


Subject(s)
Caseins , Serum Albumin, Bovine , Caseins/chemistry , Motion , Diffusion
3.
Int J Mol Sci ; 24(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37240295

ABSTRACT

It is known that four peptide fragments of predominant protein in human semen Semenogelin 1 (SEM1) (SEM1(86-107), SEM1(68-107), SEM1(49-107) and SEM1(45-107)) are involved in fertilization and amyloid formation processes. In this work, the structure and dynamic behavior of SEM1(45-107) and SEM1(49-107) peptides and their N-domains were described. According to ThT fluorescence spectroscopy data, it was shown that the amyloid formation of SEM1(45-107) starts immediately after purification, which is not observed for SEM1(49-107). Seeing that the peptide amino acid sequence of SEM1(45-107) differs from SEM1(49-107) only by the presence of four additional amino acid residues in the N domain, these domains of both peptides were obtained via solid-phase synthesis and the difference in their dynamics and structure was investigated. SEM1(45-67) and SEM1(49-67) showed no principal difference in dynamic behavior in water solution. Furthermore, we obtained mostly disordered structures of SEM1(45-67) and SEM1(49-67). However, SEM1(45-67) contains a helix (E58-K60) and helix-like (S49-Q51) fragments. These helical fragments may rearrange into ß-strands during amyloid formation process. Thus, the difference in full-length peptides' (SEM1(45-107) and SEM1(49-107)) amyloid-forming behavior may be explained by the presence of a structured helix at the SEM1(45-107) N-terminus, which contributes to an increased rate of amyloid formation.


Subject(s)
Amyloid , Peptides , Humans , Amino Acid Sequence , Peptides/chemistry , Amyloid/chemistry , Peptide Fragments/chemistry , Amyloidogenic Proteins , Circular Dichroism , Protein Folding , Amyloid beta-Peptides/chemistry
4.
Biochemistry ; 62(12): 1906-1915, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37246528

ABSTRACT

The initial stage of fibril formation of C-terminal region PAP(248-286) of human seminal plasma protein prostatic acid phosphatase was considered. Amyloid fibrils from the peptide PAP(248-286) are termed as a semen-derived enhancer of viral infection (SEVI) found in abundant quantities in semen. The kinetics of the amyloid fibril formation process consists of two characteristic phases (lag phase/nucleation phase and growth phase/elongation phase). The lag phase can be caused by the presence of mature amyloid fibrils (seeds) in protein solution, so-called secondary nucleation. The secondary nucleation includes interaction of protein monomers with the mature fibril surface that leads to protein spatial structural changes for further amyloid fibril formation. In this work, changes of the PAP(248-286) spatial structure were obtained during the secondary nucleation phase. Pulsed-field gradient (PFG) NMR was used to characterize the behavior of monomeric PAP(248-286) in water solution after PAP(248-286) seed addition. The self-diffusion coefficient showed compactization of the peptide monomer due to fibril-monomer interactions. PAP(248-286) spatial structural changes were detected with the help of high-resolution NMR spectroscopy and molecular dynamics (MD) simulation. The folding of PAP(248-286) occurs due to backbone chain bending in the region of H270 and T275 amino acid residues. Obtained folded conformation of PAP(248-286) emerging in the secondary nucleation process is energetically favorable and retains after monomer-amyloid interaction. The structural changes are associated with localization of PAP(248-286) hydrophobic surface regions, which are probably responsible for peptide monomer-amyloid interactions.


Subject(s)
Amyloid , Peptides , Humans , Amyloid/chemistry , Molecular Dynamics Simulation , Acid Phosphatase/metabolism , Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry
5.
Polymers (Basel) ; 14(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36236018

ABSTRACT

During the last few decades, polysaccharide hydrogels attract more and more attention as therapeutic protein delivery systems due to their biocompatibility and the simplicity of the biodegradation of natural polymers. The protein retention by and release from the polysaccharide gel network is regulated by geometry and physical interactions of protein with the matrix. In the present work, we studied the molecular details of interactions between κ-carrageenan and three lipases, namely the lipases from Candida rugosa, Mucor javanicus, and Rhizomucor miehei-which differ in their size and net charge-upon protein immobilization in microparticles of polysaccharide gel. The kinetics of protein release revealed the different capability of κ-carrageenan to retain lipases, which are generally negatively charged; that was shown to be in line with the energy of interactions between polysaccharides and positively charged epitopes on the protein surface. These data create a platform for the novel design of nanocarriers for biomedical probes of enzymatic origin.

6.
Int J Mol Sci ; 23(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36012504

ABSTRACT

One of the commonly accepted approaches to estimate protein-protein interactions (PPI) in aqueous solutions is the analysis of their translational diffusion. The present review article observes a phenomenological approach to analyze PPI effects via concentration dependencies of self- and collective translational diffusion coefficient for several spheroidal proteins derived from the pulsed field gradient NMR (PFG NMR) and dynamic light scattering (DLS), respectively. These proteins are rigid globular α-chymotrypsin (ChTr) and human serum albumin (HSA), and partly disordered α-casein (α-CN) and ß-lactoglobulin (ß-Lg). The PPI analysis enabled us to reveal the dominance of intermolecular repulsion at low ionic strength of solution (0.003-0.01 M) for all studied proteins. The increase in the ionic strength to 0.1-1.0 M leads to the screening of protein charges, resulting in the decrease of the protein electrostatic potential. The increase of the van der Waals potential for ChTr and α-CN characterizes their propensity towards unstable weak attractive interactions. The decrease of van der Waals interactions for ß-Lg is probably associated with the formation of stable oligomers by this protein. The PPI, estimated with the help of interaction potential and idealized spherical molecular geometry, are in good agreement with experimental data.


Subject(s)
Caseins , Protein Processing, Post-Translational , Biophysical Phenomena , Caseins/chemistry , Diffusion , Humans , Osmolar Concentration , Static Electricity
7.
Langmuir ; 37(34): 10394-10401, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34403253

ABSTRACT

Fibrinogen (Fg) self-assembly is sensitive to the physicochemical properties of an environment like pH and ionic strength. These parameters tune the direction and strength of noncovalent physical driving forces determining protein intermolecular interactions. The attraction-repulsion balance in intermolecular interactions of the multidomain protein Fg at pH values 3.5, 7.4, and 9.5 and varying ionic strengths of the water medium has been analyzed by the complex diffusive approach, proposed by us previously. The concentration dependence of protein collective diffusion was analyzed within the phenomenological approach, based on the frictional formalism of nonequilibrium thermodynamics proposed by H. Vink. The analysis of protein diffusion data has shown the fundamental difference in the physical nature and direction of interaction forces between protein molecules at different conditions. The paired interaction potential of protein molecules was characterized in terms of second virial coefficients and Hamaker constants within the Deryaguin-Landau-Verwey-Overbeek theory and the "porous" colloid particle model. Our results indicated the maximum Hamaker constant and dominance of the van der Waals attraction between Fg molecules at pH 7.4. The increase in pH up to 9.5 results in the zero values of the second virial coefficient and Hamaker constant, corresponding to the full reciprocal compensation for electrostatic repulsion and van der Waals attraction. In the acidic medium (pH 3.5), the strong electrostatic repulsion substantially exceeds the van der Waals attraction. A high ionic strength is characterized by a significant decrease of all intermolecular interactions, which is expressed in almost zero values of virial coefficients and the Hamaker constant. Thus, it is experimentally shown that the physiological conditions of the Fg environment (pH 7.4 and slight ionic strength) provide a high probability for peak physical attraction between fibrinogen molecules, which is used in nature to facilitate blood clotting.


Subject(s)
Fibrinogen , Hydrogen-Ion Concentration , Osmolar Concentration , Static Electricity , Thermodynamics
8.
J Phys Chem A ; 123(46): 10190-10196, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31657566

ABSTRACT

The study of intermolecular interactions of proteins has been an important problem for many years. This paper presents an approach to analyze different levels of protein interactions in solutions through a set of the second- and higher-order virial coefficients. The proposed approach is based on the diversified analysis of protein translational collective diffusion and self-diffusion obtained by dynamic light scattering and the pulsed-field gradient NMR (PFG NMR) spectroscopy experimental data. The experimental results were analyzed within the theoretical approach based on Vink's frictional formalism of nonequilibrium thermodynamics and the standard Derjaguin-Landau-Verwey-Overbeekb (DLVO) theory of interactions of colloid particles in electrolyte solutions. The second- and higher-order virial coefficients were obtained to estimate the pairwise and many-body intermolecular interactions in the solutions of globular α-chymotrypsin and intrinsically unstructured αS-casein. The second virial coefficients were calculated from the model of the protein-protein potential of mean force. The description of protein-protein interactions includes a set of interaction potentials: the attractive charge-dipole, dipole-dipole, the dispersion Hamaker, the mean force osmotic-attraction, and the repulsive charge-charge ones. It has been found that the major contribution to the intermolecular αS-casein interactions is made by the repulsive charge-charge potential, whereas for the case of α-chymotrypsin, the contributions from other types of interaction are of importance. It was determined that the model was well suited to describe the interactions of both globular and intrinsically disordered proteins. The suggested combination of Vink's approach and the DLVO theory is novel and holds much promise to make a profound analysis of the processes in systems containing various types of protein molecules.


Subject(s)
Chymotrypsin/chemistry , Chymotrypsin/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Diffusion , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...