Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(10): 6871-6880, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33748601

ABSTRACT

Gold has always fascinated humans, occupying an important functional and symbolic role in civilization. In earlier times, gold was predominantly used in jewelry; today, this noble metal's surface properties are taken advantage of in catalysis and plasmonics. In this article, the plasmon resonance of gold dumbbell nanorods is investigated. This unusual morphology was obtained by a seed-mediated growth method. The concentration of chemical precursors such as cetyltrimethylammonium bromide and silver nitrate plays a significant role in controlling the shape of the nanorods. Indeed, the aspect ratio of dumbbell nanostructures was varied from 2.6 to 4. UV-visible absorption spectra revealed a shift of the longitudinal surface plasmon resonance peak from 669 to 789 nm. Having the plasmon resonance in the near infrared region helps to use those nanostructures as photothermal agents.

2.
Nanomaterials (Basel) ; 11(2)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670538

ABSTRACT

Cancer and antimicrobial resistance to antibiotics are two of the most worrying healthcare concerns that humanity is facing nowadays. Some of the most promising solutions for these healthcare problems may come from nanomedicine. While the traditional synthesis of nanomaterials is often accompanied by drawbacks such as high cost or the production of toxic by-products, green nanotechnology has been presented as a suitable solution to overcome such challenges. In this work, an approach for the synthesis of tellurium (Te) nanostructures in aqueous media has been developed using aloe vera (AV) extracts as a unique reducing and capping agent. Te-based nanoparticles (AV-TeNPs), with sizes between 20 and 60 nm, were characterized in terms of physicochemical properties and tested for potential biomedical applications. A significant decay in bacterial growth after 24 h was achieved for both Methicillin-resistant Staphylococcus aureus and multidrug-resistant Escherichia coli at a relative low concentration of 5 µg/mL, while there was no cytotoxicity towards human dermal fibroblasts after 3 days of treatment. AV-TeNPs also showed anticancer properties up to 72 h within a range of concentrations between 5 and 100 µg/mL. Consequently, here, we present a novel and green approach to produce Te-based nanostructures with potential biomedical applications, especially for antibacterial and anticancer applications.

3.
Nanoscale Adv ; 3(14): 4106-4118, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-36132830

ABSTRACT

Bismuth oxide is an important bismuth compound having applications in electronics, photo-catalysis and medicine. At the nanoscale, bismuth oxide experiences a variety of new physico-chemical properties because of its increased surface to volume ratio leading to potentially new applications. In this manuscript, we report for the very first time the synthesis of bismuth oxide (Bi2O3) nano-flakes by pulsed laser ablation in liquids without any external assistance (no acoustic, electric field, or magnetic field). The synthesis was performed by irradiating, pure bismuth needles immerged in de-ionized water, at very high fluence ∼160 J cm-2 in order to be highly selective and only promote the growth of two-dimensional structures. The x- and y-dimensions of the flakes were around 1 µm in size while their thickness was 47.0 ± 12.7 nm as confirmed by AFM analysis. The flakes were confirmed to be α- and γ-Bi2O3 by SAED and Raman spectroscopy. By using this mixture of flakes, we demonstrated that the nanostructures can be used as antimicrobial agents, achieving a complete inhibition of Gram positive (MSRA) and Gram negative bacteria (MDR-EC) at low concentration, ∼50 ppm.

4.
Nanoscale Adv ; 3(7): 1954-1961, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-36133079

ABSTRACT

Vanadium pentoxide is the most important vanadium compound by being the precursor to most vanadium alloys. It also plays an essential role in the production of sulfuric acid as well as in metal-ion batteries and supercapacitors. In this paper, pulsed laser ablation in liquids is used to synthesize "naked" vanadium pentoxide nanostructures. The resulting particles take up "nearly-spherical" and "flower-like" morphologies, composed of α-V2O5 and ß-V2O5 crystalline phases. Even "naked", the nanostructures are stable in time with a zeta potential of -51 ± 7 mV. In order to maximize the production of vanadium pentoxide nanostructure, the optimal repetition rate was determined to be @ ∼6600 Hz when irradiating a pure vanadium target in DI-water. This corresponds to a cavitation bubble lifetime of around ∼0.15 ms. At that repetition rate, the production reached ∼10 ppm per minute of irradiation. Finally, from the characterization of the α-V2O5 and ß-V2O5 nanostructures, the surface energy of each phase has been carefully determined at 0.308 and 1.483 J cm-2, respectively. Consequently, the ß-phase was found to display a surface energy very close to platinum. The exciton Bohr radius has been determined at 3.5 ± 0.7 nm and 2.0 ± 0.6 nm for α-V2O5 and ß-V2O5 phases, respectively.

5.
ACS Omega ; 5(6): 2660-2669, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32095689

ABSTRACT

Currently, antibiotic resistance and cancer are two of the most important public health problems killing more than ∼1.5 million people annually, showing that antibiotics and current chemotherapeutics are not as effective as they were in the past. Nanotechnology is presented here as a potential solution. However, current protocols for the traditional physicochemical synthesis of nanomaterials are not free of environmental and social drawbacks, often involving the use of toxic catalysts. This article shows the production of pure naked selenium nanoparticles (SeNPs) by a novel green process called pulsed laser ablation in liquids (PLAL). After the first set of irradiations, another set was performed to reduce the size below 100 nm, which resulted in a colloidal solution of spherical SeNPs with two main populations having sizes around ∼80 and ∼10 nm. The particles after the second set of irradiations also showed higher colloidal stability. SeNPs showed a dose-dependent antibacterial effect toward both standard and antibiotic-resistant phenotypes of Gram-negative and Gram-positive bacteria at a range of concentrations between 0.05 and 25 ppm. Besides, the SeNPs showed a low cytotoxic effect when cultured with human dermal fibroblasts cells at a range of concentrations up to 1 ppm while showing an anticancer effect toward human melanoma and glioblastoma cells at the same concentration range. This article therefore introduces the possibility of using totally naked SeNPs synthesized by a new PLAL protocol as a novel and efficient nanoparticle fabrication process for biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...