Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(46): 41937-41942, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36440123

ABSTRACT

The unique properties of conducting polymers make them ideally suited for applications in organic electronics, photovoltaics, and energy storage systems. Depending on the specific application, they can outperform metal-based electronics by cost, mechanical flexibility, molecular design opportunities, and environmental impact. Many composites of conducting polymers with polyanions can be processed in water. However, the facile processing of such composites comes at a cost of reduced conductivity. In this manuscript, electronic conductivity dependence on composition for a composite of polypyrrole (PPy) with carboxymethyl cellulose (CMC) has been studied. Secondary ion mass spectrometry and electron energy loss spectroscopy mapping indicate the formation of a nanostructure forming PPy-rich nanospheres with a CMC-rich surface coverage. This structure requires inter-particle electron conduction to occur via quantum tunneling. Variations in the tunneling distance are dependent on the applied pressure, giving rise to a pressure-dependent electronic conductivity and thus piezoresistance. This behavior opens new applications of conducting polymer composites in pressure-sensitive electronic devices, providing metal-free alternatives to quantum tunneling composites.

2.
Nat Mater ; 17(1): 16-20, 2018 01.
Article in English | MEDLINE | ID: mdl-29180779

ABSTRACT

There is considerable interest in multivalent cation batteries, such as those based on magnesium, calcium or aluminium. Most attention has focused on magnesium. In all cases the metal anode represents a significant challenge. Recent work has shown that calcium can be plated and stripped, but only at elevated temperatures, 75 to 100 °C, with small capacities, typically 0.165 mAh cm-2, and accompanied by significant side reactions. Here we demonstrate that calcium can be plated and stripped at room temperature with capacities of 1 mAh cm-2 at a rate of 1 mA cm-2, with low polarization (∼100 mV) and in excess of 50 cycles. The dominant product is calcium, accompanied by a small amount of CaH2 that forms by reaction between the deposited calcium and the electrolyte, Ca(BH4)2 in tetrahydrofuran (THF). This occurs in preference to the reactions which take place in most electrolyte solutions forming CaCO3, Ca(OH)2 and calcium alkoxides, and normally terminate the electrochemistry. The CaH2 protects the calcium metal at open circuit. Although this work does not solve all the problems of calcium as an anode in calcium-ion batteries, it does demonstrate that significant quantities of calcium can be plated and stripped at room temperature with low polarization.

3.
J Phys Chem Lett ; 8(24): 6160-6164, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29206467

ABSTRACT

The prolific lithium battery electrode material lithium iron phosphate (LiFePO4) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. We investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO4 structure. Oxidizing LiFePO4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahigh rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.

4.
Chemistry ; 22(17): 5849-52, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-26953926

ABSTRACT

Graphene oxide is regarded as a major precursor for graphene-based materials. The development of graphene oxide based derivatives with new functionalities requires a thorough understanding of its chemical reactivity, especially for canonical synthetic methods such as the Diels-Alder cycloaddition. The Diels-Alder reaction has been successfully extended with graphene oxide as a source of diene by using maleic anhydride as a dienophile, thereby outlining the presence of the cis diene present in the graphene oxide framework. This reaction provides fundamental information for understanding the exact structure and chemical nature of graphene oxide. On the basis of high-resolution (13) C-SS NMR spectra, we show evidence for the formation of new sp(3) carbon centers covalently bonded to graphene oxide following hydrolysis of the reaction product. DFT calculations are also used to show that the presence of a cis dihydroxyl and C vacancy on the surface of graphene oxide are promoting the reaction with significant negative reaction enthalpies.

SELECTION OF CITATIONS
SEARCH DETAIL
...