Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dev Orig Health Dis ; 13(2): 231-243, 2022 04.
Article in English | MEDLINE | ID: mdl-33941306

ABSTRACT

Maternal nutrition is critical in mammalian development, influencing the epigenetic reprogramming of gametes, embryos, and fetal programming. We evaluated the effects of different levels of sulfur (S) and cobalt (Co) in the maternal diet throughout the pre- and periconceptional periods on the biochemical and reproductive parameters of the donors and the DNA methylome of the progeny in Bos indicus cattle. The low-S/Co group differed from the control with respect to homocysteine, folic acid, B12, insulin growth factor 1, and glucose. The oocyte yield was lower in heifers from the low S/Co group than that in the control heifers. Embryos from the low-S/Co group exhibited 2320 differentially methylated regions (DMRs) across the genome compared with the control embryos. We also characterized candidate DMRs linked to the DNMT1 and DNMT3B genes in the blood and sperm cells of the adult progeny. A DMR located in DNMT1 that was identified in embryos remained differentially methylated in the sperm of the progeny from the low-S/Co group. Therefore, we associated changes in specific compounds in the maternal diet with DNA methylation modifications in the progeny. Our results help to elucidate the impact of maternal nutrition on epigenetic reprogramming in livestock, opening new avenues of research to study the effect of disturbed epigenetic patterns in early life on health and fertility in adulthood. Considering that cattle are physiologically similar to humans with respect to gestational length, our study may serve as a model for studies related to the developmental origin of health and disease in humans.


Subject(s)
Cobalt , Epigenome , Animals , Cattle , Cobalt/metabolism , DNA Methylation , Female , Mammals , Oocytes/metabolism , Sulfur/metabolism
2.
Domest Anim Endocrinol ; 72: 106447, 2020 07.
Article in English | MEDLINE | ID: mdl-32403000

ABSTRACT

We aimed to elucidate the effects of PGE2 and PGF2α on the in vitro maturation (IVM) of bovine oocytes. First, cumulus-oocyte complexes were matured in the media supplemented with or without PGE2, PGF2α, or PGE2 plus PGF2α for the final 24, 12, or 6 h of culture. Then, the cumulus-oocyte complexes were matured in the absence or presence of a PG endoperoxide synthase 2 (PTGS2) enzyme inhibitor (NS398) supplemented with PGE2, PGF2α, or PGE2 plus PGF2α. Finally, the expression of genes associated with PGs activity in cumulus cells (PTGS2, PG E-synthase-1 [PTGES1], and aldo-keto reductase 1 [AKR1B1]) or oocytes (receptors for PGE2 [PTGER2] and PGF2α [PTGFR]) of different competencies was quantified. Supplementation of the IVM medium with PGs did not improve in vitro embryo production or embryo quality (P > 0.05). During maturation, the relative abundance of PTGS2 transcripts increased (P < 0.05) only in the less-competent group, whereas those of PTGES1 increased in the less-competent and in the more-competent groups. Conversely, AKR1B1 expression decreased only in the less-competent group (P < 0.05). Receptors for the PGE2 and PGF2α genes were very low or undetectable in oocytes. In conclusion, PGE2 and PGF2α are not recommended for media supplementation during maturation because they have no effect on embryo development. Although genes related to PGs activity are differentially expressed in cumulus cells of cumulus-oocyte complexes of different competence during maturation, the expression of PGE2 and PGF2α receptor genes was either not detectable or was detected at low levels in oocytes.


Subject(s)
Dinoprost/pharmacology , Dinoprostone/pharmacology , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/drug effects , Animals , Cattle , Embryo Culture Techniques/veterinary , Gene Expression Regulation, Developmental/drug effects , Nitrobenzenes/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...