Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Am J Hum Genet ; 110(5): 809-825, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37075751

ABSTRACT

Heterozygous pathogenic variants in POLR1A, which encodes the largest subunit of RNA Polymerase I, were previously identified as the cause of acrofacial dysostosis, Cincinnati-type. The predominant phenotypes observed in the cohort of 3 individuals were craniofacial anomalies reminiscent of Treacher Collins syndrome. We subsequently identified 17 additional individuals with 12 unique heterozygous variants in POLR1A and observed numerous additional phenotypes including neurodevelopmental abnormalities and structural cardiac defects, in combination with highly prevalent craniofacial anomalies and variable limb defects. To understand the pathogenesis of this pleiotropy, we modeled an allelic series of POLR1A variants in vitro and in vivo. In vitro assessments demonstrate variable effects of individual pathogenic variants on ribosomal RNA synthesis and nucleolar morphology, which supports the possibility of variant-specific phenotypic effects in affected individuals. To further explore variant-specific effects in vivo, we used CRISPR-Cas9 gene editing to recapitulate two human variants in mice. Additionally, spatiotemporal requirements for Polr1a in developmental lineages contributing to congenital anomalies in affected individuals were examined via conditional mutagenesis in neural crest cells (face and heart), the second heart field (cardiac outflow tract and right ventricle), and forebrain precursors in mice. Consistent with its ubiquitous role in the essential function of ribosome biogenesis, we observed that loss of Polr1a in any of these lineages causes cell-autonomous apoptosis resulting in embryonic malformations. Altogether, our work greatly expands the phenotype of human POLR1A-related disorders and demonstrates variant-specific effects that provide insights into the underlying pathogenesis of ribosomopathies.


Subject(s)
Craniofacial Abnormalities , Mandibulofacial Dysostosis , Humans , Mice , Animals , Mandibulofacial Dysostosis/genetics , Apoptosis , Mutagenesis , Ribosomes/genetics , Phenotype , Neural Crest/pathology , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/pathology
2.
Genet Med ; 25(5): 100020, 2023 05.
Article in English | MEDLINE | ID: mdl-36718845

ABSTRACT

PURPOSE: This study aimed to assess the amount and types of clinical genetic testing denied by insurance and the rate of diagnostic and candidate genetic findings identified through research in patients who faced insurance denials. METHODS: Analysis consisted of review of insurance denials in 801 patients enrolled in a pediatric genomic research repository with either no previous genetic testing or previous negative genetic testing result identified through cross-referencing with insurance prior-authorizations in patient medical records. Patients and denials were also categorized by type of insurance coverage. Diagnostic findings and candidate genetic findings in these groups were determined through review of our internal variant database and patient charts. RESULTS: Of the 801 patients analyzed, 147 had insurance prior-authorization denials on record (18.3%). Exome sequencing and microarray were the most frequently denied genetic tests. Private insurance was significantly more likely to deny testing than public insurance (odds ratio = 2.03 [95% CI = 1.38-2.99] P = .0003). Of the 147 patients with insurance denials, 53.7% had at least 1 diagnostic or candidate finding and 10.9% specifically had a clinically diagnostic finding. Fifty percent of patients with clinically diagnostic results had immediate medical management changes (5.4% of all patients experiencing denials). CONCLUSION: Many patients face a major barrier to genetic testing in the form of lack of insurance coverage. A number of these patients have clinically diagnostic findings with medical management implications that would not have been identified without access to research testing. These findings support re-evaluation of insurance carriers' coverage policies.


Subject(s)
Genomics , Insurance Coverage , Child , Humans
3.
Genet Med ; 24(6): 1336-1348, 2022 06.
Article in English | MEDLINE | ID: mdl-35305867

ABSTRACT

PURPOSE: This study aimed to provide comprehensive diagnostic and candidate analyses in a pediatric rare disease cohort through the Genomic Answers for Kids program. METHODS: Extensive analyses of 960 families with suspected genetic disorders included short-read exome sequencing and short-read genome sequencing (srGS); PacBio HiFi long-read genome sequencing (HiFi-GS); variant calling for single nucleotide variants (SNV), structural variant (SV), and repeat variants; and machine-learning variant prioritization. Structured phenotypes, prioritized variants, and pedigrees were stored in PhenoTips database, with data sharing through controlled access the database of Genotypes and Phenotypes. RESULTS: Diagnostic rates ranged from 11% in patients with prior negative genetic testing to 34.5% in naive patients. Incorporating SVs from genome sequencing added up to 13% of new diagnoses in previously unsolved cases. HiFi-GS yielded increased discovery rate with >4-fold more rare coding SVs compared with srGS. Variants and genes of unknown significance remain the most common finding (58% of nondiagnostic cases). CONCLUSION: Computational prioritization is efficient for diagnostic SNVs. Thorough identification of non-SNVs remains challenging and is partly mitigated using HiFi-GS sequencing. Importantly, community research is supported by sharing real-time data to accelerate gene validation and by providing HiFi variant (SNV/SV) resources from >1000 human alleles to facilitate implementation of new sequencing platforms for rare disease diagnoses.


Subject(s)
Genomics , Rare Diseases , Child , Genome , High-Throughput Nucleotide Sequencing , Humans , Pedigree , Rare Diseases/diagnosis , Rare Diseases/genetics , Sequence Analysis, DNA
4.
Hum Mutat ; 33(1): 165-79, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21948486

ABSTRACT

We report 24 unrelated individuals with deletions and 17 additional cases with duplications at 10q11.21q21.1 identified by chromosomal microarray analysis. The rearrangements range in size from 0.3 to 12 Mb. Nineteen of the deletions and eight duplications are flanked by large, directly oriented segmental duplications of >98% sequence identity, suggesting that nonallelic homologous recombination (NAHR) caused these genomic rearrangements. Nine individuals with deletions and five with duplications have additional copy number changes. Detailed clinical evaluation of 20 patients with deletions revealed variable clinical features, with developmental delay (DD) and/or intellectual disability (ID) as the only features common to a majority of individuals. We suggest that some of the other features present in more than one patient with deletion, including hypotonia, sleep apnea, chronic constipation, gastroesophageal and vesicoureteral refluxes, epilepsy, ataxia, dysphagia, nystagmus, and ptosis may result from deletion of the CHAT gene, encoding choline acetyltransferase, and the SLC18A3 gene, mapping in the first intron of CHAT and encoding vesicular acetylcholine transporter. The phenotypic diversity and presence of the deletion in apparently normal carrier parents suggest that subjects carrying 10q11.21q11.23 deletions may exhibit variable phenotypic expressivity and incomplete penetrance influenced by additional genetic and nongenetic modifiers.


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Aberrations , Nerve Growth Factors/genetics , Segmental Duplications, Genomic/genetics , Sequence Deletion , Vesicular Acetylcholine Transport Proteins/genetics , Child , Child, Preschool , Chromosome Mapping , Chromosomes, Human, Pair 10 , DNA Copy Number Variations , Developmental Disabilities/complications , Developmental Disabilities/genetics , Female , Genetic Variation , Homologous Recombination , Humans , In Situ Hybridization, Fluorescence , Infant , Intellectual Disability/complications , Intellectual Disability/genetics , Male , Oligonucleotide Array Sequence Analysis , Penetrance
5.
J Med Genet ; 49(2): 110-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22180641

ABSTRACT

BACKGROUND: Chromosome 15q24 microdeletion syndrome is a rare genomic disorder characterised by intellectual disability, growth retardation, unusual facial morphology and other anomalies. To date, 20 patients have been reported; 18 have had detailed breakpoint analysis. AIM: To further delineate the features of the 15q24 microdeletion syndrome, the clinical and molecular characterisation of fifteen patients with deletions in the 15q24 region was performed, nearly doubling the number of reported patients. METHODS: Breakpoints were characterised using a custom, high-density array comparative hybridisation platform, and detailed phenotype information was collected for each patient. RESULTS: Nine distinct deletions with different breakpoints ranging in size from 266 kb to 3.75 Mb were identified. The majority of breakpoints lie within segmental duplication (SD) blocks. Low sequence identity and large intervals of unique sequence between SD blocks likely contribute to the rarity of 15q24 deletions, which occur 8-10 times less frequently than 1q21 or 15q13 microdeletions in our series. Two small, atypical deletions were identified within the region that help delineate the critical region for the core phenotype in the 15q24 microdeletion syndrome. CONCLUSION: The molecular characterisation of these patients suggests that the core cognitive features of the 15q24 microdeletion syndrome, including developmental delays and severe speech problems, are largely due to deletion of genes in a 1.1-Mb critical region. However, genes just distal to the critical region also play an important role in cognition and in the development of characteristic facial features associated with 15q24 deletions. Clearly, deletions in the 15q24 region are variable in size and extent. Knowledge of the breakpoints and size of deletion combined with the natural history and medical problems of our patients provide insights that will inform management guidelines. Based on common phenotypic features, all patients with 15q24 microdeletions should receive a thorough neurodevelopmental evaluation, physical, occupational and speech therapies, and regular audiologic and ophthalmologic screening.


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Deletion , Chromosomes, Human, Pair 15 , Developmental Disabilities/genetics , Abnormalities, Multiple/diagnosis , Base Sequence , Chromosome Breakpoints , Comparative Genomic Hybridization , Developmental Disabilities/diagnosis , Facies , Female , Genetic Association Studies , Humans , Male , Molecular Sequence Data , Segmental Duplications, Genomic , Syndrome
6.
Nat Genet ; 43(9): 838-46, 2011 Aug 14.
Article in English | MEDLINE | ID: mdl-21841781

ABSTRACT

To understand the genetic heterogeneity underlying developmental delay, we compared copy number variants (CNVs) in 15,767 children with intellectual disability and various congenital defects (cases) to CNVs in 8,329 unaffected adult controls. We estimate that ∼14.2% of disease in these children is caused by CNVs >400 kb. We observed a greater enrichment of CNVs in individuals with craniofacial anomalies and cardiovascular defects compared to those with epilepsy or autism. We identified 59 pathogenic CNVs, including 14 new or previously weakly supported candidates, refined the critical interval for several genomic disorders, such as the 17q21.31 microdeletion syndrome, and identified 940 candidate dosage-sensitive genes. We also developed methods to opportunistically discover small, disruptive CNVs within the large and growing diagnostic array datasets. This evolving CNV morbidity map, combined with exome and genome sequencing, will be critical for deciphering the genetic basis of developmental delay, intellectual disability and autism spectrum disorders.


Subject(s)
Chromosome Mapping , Congenital Abnormalities/genetics , Developmental Disabilities/genetics , Gene Dosage , Genetic Variation , Adult , Child, Preschool , Humans
7.
Nat Genet ; 42(3): 203-9, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20154674

ABSTRACT

We report the identification of a recurrent, 520-kb 16p12.1 microdeletion associated with childhood developmental delay. The microdeletion was detected in 20 of 11,873 cases compared with 2 of 8,540 controls (P = 0.0009, OR = 7.2) and replicated in a second series of 22 of 9,254 cases compared with 6 of 6,299 controls (P = 0.028, OR = 2.5). Most deletions were inherited, with carrier parents likely to manifest neuropsychiatric phenotypes compared to non-carrier parents (P = 0.037, OR = 6). Probands were more likely to carry an additional large copy-number variant when compared to matched controls (10 of 42 cases, P = 5.7 x 10(-5), OR = 6.6). The clinical features of individuals with two mutations were distinct from and/or more severe than those of individuals carrying only the co-occurring mutation. Our data support a two-hit model in which the 16p12.1 microdeletion both predisposes to neuropsychiatric phenotypes as a single event and exacerbates neurodevelopmental phenotypes in association with other large deletions or duplications. Analysis of other microdeletions with variable expressivity indicates that this two-hit model might be more generally applicable to neuropsychiatric disease.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 16 , Developmental Disabilities/genetics , Models, Genetic , Adult , Case-Control Studies , Child , Child, Preschool , Chromosomes, Human, Pair 16/genetics , Comparative Genomic Hybridization/methods , Family , Gene Frequency , Humans , Infant , Oligonucleotide Array Sequence Analysis , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Recurrence , Severity of Illness Index
8.
J Med Genet ; 47(3): 155-61, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19833603

ABSTRACT

BACKGROUND: The introduction of molecular karyotyping technologies facilitated the identification of specific genetic disorders associated with imbalances of certain genomic regions. A detailed phenotypic delineation of interstitial 16p13.3 duplications is hampered by the scarcity of such patients. OBJECTIVES: To delineate the phenotypic spectrum associated with interstitial 16p13.3 duplications, and perform a genotype-phenotype analysis. RESULTS: The present report describes the genotypic and phenotypic delineation of nine submicroscopic interstitial 16p13.3 duplications. The critically duplicated region encompasses a single gene, CREBBP, which is mutated or deleted in Rubinstein-Taybi syndrome. In 10 out of the 12 hitherto described probands, the duplication arose de novo. CONCLUSIONS: Interstitial 16p13.3 duplications have a recognizable phenotype, characterized by normal to moderately retarded mental development, normal growth, mild arthrogryposis, frequently small and proximally implanted thumbs and characteristic facial features. Occasionally, developmental defects of the heart, genitalia, palate or the eyes are observed. The frequent de novo occurrence of 16p13.3 duplications demonstrates the reduced reproductive fitness associated with this genotype. Inheritance of the duplication from a clinically normal parent in two cases indicates that the associated phenotype is incompletely penetrant.


Subject(s)
CREB-Binding Protein/genetics , Chromosomes, Human, Pair 16 , Gene Duplication , Rubinstein-Taybi Syndrome/genetics , Abnormalities, Multiple/genetics , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Karyotyping , Male , Phenotype , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...