Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Biol Chem ; 275(36): 27933-9, 2000 Sep 08.
Article in English | MEDLINE | ID: mdl-10871631

ABSTRACT

Early-onset torsion dystonia is an autosomal dominant hyperkinetic movement disorder that has recently been linked to a 3-base pair deletion in the DYT1 gene. The DYT1 gene encodes a 332-amino acid protein, torsin A, that bears low but significant homology to the Hsp100/Clp family of ATPase chaperones. The deletion in DYT1 associated with torsion dystonia results in the loss of one of a pair of glutamic acid residues residing near the C terminus of torsin A (DeltaE-torsin A). At present, little is known about the expression, subcellular distribution, and/or function of either the torsin A or DeltaE-torsin A protein. When transfected into mammalian cells, both torsin A and DeltaE-torsin A were found to behave as lumenally oriented glycoproteins. Immunofluorescence studies revealed that torsin A localized to a diffuse network of intracellular membranes displaying significant co-immunoreactivity for the endoplasmic reticulum resident protein BiP, whereas DeltaE-torsin A resided in large spheroid intracellular structures exclusive of BiP immunoreactivity. These results initially suggested that DeltaE-torsin A might exist as insoluble aggregates. However, both torsin A and DeltaE-torsin A were readily solubilized by nonionic detergents, were similarly accessible to proteases, and displayed equivalent migration patterns on sucrose gradients. Collectively, these data support that both the wild type and torsion dystonia-associated forms of torsin A are properly folded, lumenal proteins of similar oligomeric states. The potential relationship between the altered subcellular distribution of DeltaE-torsin A and the disease-inducing phenotype of the protein is discussed.


Subject(s)
Carrier Proteins/physiology , Cell Nucleus/physiology , Dystonia Musculorum Deformans/genetics , Molecular Chaperones , Animals , COS Cells , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Line , Cell Nucleus/ultrastructure , Humans , Mutagenesis, Site-Directed , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Deletion , Transfection
2.
Bioconjug Chem ; 9(2): 242-9, 1998.
Article in English | MEDLINE | ID: mdl-9548540

ABSTRACT

This report describes the synthesis, characterization, and in vivo testing of several bifunctional contrast-enhancing agents for optical and magnetic resonance imaging (MRI) of experimental animals. These new agents integrate the advantages of both techniques since they can be visualized simultaneously by light and MRI microscopy. Employing this strategy allows the same biological structures of a specimen to be studied at dramatically different resolutions and depths. The complexes possess a metal chelator for binding a paramagnetic ion, gadolinium (Gd3+), and a covalently attached fluorescent dye. The first class of complexes are low-molecular weight species that are composed of the macrocyclic tetraamine 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid (DOTA) as the metal-chelating ligand coupled to tetramethylrhodamine. The second class of MRI-enhancing agents are composed of high-molecular weight polymers that are membrane impermeable and once injected into a cell or cells are trapped inside. These complexes possess multiple copies of both the metal-chelator-diethylenetriaminepentaacetic acid (DTPA) and the tetramethylrhodamine attached to a macromolecular framework of either poly(D-lysine) (pdl) or dextran. Images acquired of single cells after injection with these bifunctional agents enabled us to follow the relative motions and reorganizations of different cell layers during amphibian gastrulation and neurulation in Xenopus laevis embryos.


Subject(s)
Chelating Agents/chemistry , Fluorescent Dyes/chemistry , Gadolinium/chemistry , Heterocyclic Compounds, 1-Ring , Magnetic Resonance Imaging , Animals , Cross-Linking Reagents , Dextrans/chemistry , Gadolinium DTPA/chemistry , Heterocyclic Compounds/chemistry , Microscopy, Fluorescence , Molecular Structure , Molecular Weight , Rhodamines/chemistry , Xenopus laevis/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...