Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Anal Methods ; 16(23): 3701-3713, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38805183

ABSTRACT

E. uniflora leaves are a rich source of phenolic compounds with biological activities, including myricitrin. In this study, the chemical profile of nine extracts prepared with leaves collected in three regions (mountain, beach, and mangrove) and at three different times of the day (8 am, 1 pm, and 6 pm) was evaluated from spectra originating from ultra-high resolution mass spectrometry (Fourier transform ion cyclotron resonance, FT-ICR) coupled to electrospray ionisation (ESI). The best time of the day and location for collecting the leaves of E. uniflora used as raw materials for producing extracts and the best ethanol concentration for obtaining an extract more abundant in compounds of interest were verified. Several flavonoids and phenolic acids were detected in their deprotonated form in the regions from m/z 200 to 1200. Myricitrin ([C21H20O12-H]-, m/ztheo 463.08820), its chloride adduct ([C21H20O12+Cl]-, m/ztheo 499.06488), other myricitrin derivatives, and some tannins were the main compounds detected. Considering obtaining an extract rich in phenolic compounds, including myricitrin, the best place and time of the day to collect E. uniflora leaves is in the beach region at 1 pm. In contrast, the best ethanol concentration for extract production is 70 wt%. Therefore, extraction at 96 wt% ethanol is better for obtaining an extract more abundant in phenolic acids, although 70 wt% ethanol also extracted these compounds. FTIR-PCA models were used to check for possible similarities in the data according to collection time of the day and location. These models demonstrated an excellent solution for sample screening.


Subject(s)
Phenols , Plant Extracts , Plant Leaves , Spectrometry, Mass, Electrospray Ionization , Plant Leaves/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Spectrometry, Mass, Electrospray Ionization/methods , Plant Extracts/chemistry , Phenols/analysis , Phenols/chemistry , Principal Component Analysis
2.
Food Chem ; 390: 133148, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35551027

ABSTRACT

This study aimed to evaluate the piperine content, essential oil composition, and multi-elemental composition of black pepper samples according to different drying methods and harvest season. Differences in essential oil composition and B, Ca, K, Mg, and S were noted according to sampling campaign, indicating secondary metabolism plant alterations. Mechanical drying resulted in essential oil composition changes due to high temperature exposure during processing. Increases in Fe and Cr contents when employing mechanical dryers with direct heating were also observed, due to direct contact with metallic structures and particulate material from the burning process. The As and Pb contents of several samples were higher than the maximum permissible limits, reaching 0.46 and 0.56 mg kg-1, respectively, thus surpassing legislation safety limitations for human consumption.


Subject(s)
Oils, Volatile , Piper nigrum , Alkaloids , Benzodioxoles , Humans , Oils, Volatile/chemistry , Piper nigrum/chemistry , Piperidines , Polyunsaturated Alkamides/chemistry , Seasons
3.
Virusdisease ; 32(3): 526-534, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34631977

ABSTRACT

Brazilian traditional medicine has explored the antiviral properties of many plant extracts, including those from the Brazilian pepper tree, Schinus terebinthifolius. In the present study, we investigated the chemical composition and anti-mayaro virus (MAYV) activity of S. terebinthifolius fruit. Extensive virucidal activity (more than 95%) was detected for the ethyl acetate extract and the isolated biflavonoids. From the ethyl acetate extract of Schinus terebinthifolius fruits, two bioflavonoids were isolated ((2S, 2″S)-2,3,2″,3″-tetrahydroamentoflavone and agathisflavone), which showed strong virucidal activity against Mayaro virus. Furthermore, several other compounds like terpenes and phenolics were identified by hyphenated techniques (GC-MS, LC-MS and HPLC-UV), as well as by mass spectrometry. Immunofluorescence assay confirmed antiviral activity and transmission electron microscopy revealed damage in viral particles treated with biflavonoids. The data suggest the direct action of the extract and the biflavonoids on the virus particles. The biflavonoids tetrahydroamentoflavone and agathisflavone had strong virucidal activity and reduced MAYV infection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13337-021-00698-z.

4.
Parasit Vectors ; 14(1): 443, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34479605

ABSTRACT

BACKGROUND: The arthropod-borne Mayaro virus (MAYV) causes "Mayaro fever," a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Recently, MAYV has attracted attention due to its likely urbanization. There are currently no licensed drugs against most mosquito-transmitted viruses. Punica granatum (pomegranate) fruits cultivated in Brazil have been subjected to phytochemical investigation for the identification and isolation of antiviral compounds. In the present study, we explored the antiviral activity of pomegranate extracts in Vero cells infected with Mayaro virus. METHODS: The ethanol extract and punicalagin of pomegranate were extracted solely from the shell and purified by chromatographic fractionation, and were chemically identified using spectroscopic techniques. The cytotoxicity of the purified compounds was measured by the dye uptake assay, while their antiviral activity was evaluated by a virus yield inhibition assay. RESULTS: Pomegranate ethanol extract (CC50 = 588.9, IC50 = 12.3) and a fraction containing punicalagin as major compound (CC50 = 441.5, IC50 = 28.2) were shown to have antiviral activity (SI 49 and 16, respectively) against Mayaro virus, an alphavirus. Immunofluorescence analysis showed the virucidal effect of pomegranate extract, and transmission electron microscopy (TEM) revealed damage in viral particles treated with this extract. CONCLUSIONS: The P. granatum extract is a promising source of antiviral compounds against the alphavirus MAYV and represents an excellent candidate for future studies with other enveloped RNA viruses.


Subject(s)
Alphavirus/drug effects , Antiviral Agents/pharmacology , Arboviruses/drug effects , Culicidae/virology , Phytochemicals/pharmacology , Pomegranate/chemistry , Virus Replication/drug effects , Alphavirus/classification , Animals , Chlorocebus aethiops , Hydrolyzable Tannins/pharmacology , Vero Cells
5.
Nat Prod Res ; 35(23): 5392-5396, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32515612

ABSTRACT

This work aimed to investigate the main components of methanol fractions (MFSC and MFSCf) from Saccharum officinarum L. juice and their in vivo antinociceptive potential. After LC-ESI-MS and ESI-MS/MS analysis, phenolic compounds, such as dicaffeoylquinic acid, schaftoside, vicenin-2, stilbene glycoside and the major compound tricin-7-O-(2″- α-L-rhamnopyranosyl)-α-D-galacturonide (1), were identified. MFSC and MFSCf significantly inhibited nociceptive responses in classical mice pain models. The isolated flavone, 1, inhibited strongly the neurogenic phase in formalin test without interfering with the inflammatory one. The co-administration of the opioid antagonist, naloxone, significantly reversed the antinociceptive effects on the neurogenic phase of both methanol fractions and 1, demonstrating the involvement of the opioid system on the antinociceptive effect. This work describes for the first time the antinociceptive effect of flavonoids present in sugarcane juice, highlighting the isolation and the structural elucidation of tricin-7-O-(2″-α-L-rhamnopyranosyl)-α-D-galacturonide through ESI-MS/MS, 1D- and 2D-NMR.


Subject(s)
Saccharum , Analgesics/pharmacology , Animals , Mice , Phenols , Plant Extracts/pharmacology , Tandem Mass Spectrometry
6.
Sci Rep ; 10(1): 11681, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32669593

ABSTRACT

More than 94% of colorectal cancer cases have mutations in one or more Wnt/ß-catenin signaling pathway components. Inactivating mutations in APC or activating mutations in ß-catenin (CTNNB1) lead to signaling overactivation and subsequent intestinal hyperplasia. Numerous classes of medicines derived from synthetic or natural small molecules, including alkaloids, have benefited the treatment of different diseases, including cancer, Piperine is a true alkaloid, derived from lysine, responsible for the spicy taste of black pepper (Piper nigrum) and long pepper (Piper longum). Studies have shown that piperine has a wide range of pharmacological properties; however, piperine molecular mechanisms of action are still not fully understood. By using Wnt/ß-catenin pathway epistasis experiment we show that piperine inhibits the canonical Wnt pathway induced by overexpression of ß-catenin, ß-catenin S33A or dnTCF4 VP16, while also suppressing ß-catenin nuclear localization in HCT116 cell line. Additionally, piperine impairs cell proliferation and migration in HCT116, SW480 and DLD-1 colorectal tumor cell lines, while not affecting the non-tumoral cell line IEC-6. In summary, piperine inhibits the canonical Wnt signaling pathway and displays anti-cancer effects on colorectal cancer cell lines.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Benzodioxoles/pharmacology , Gene Expression Regulation, Neoplastic , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Wnt Signaling Pathway/drug effects , Wnt3A Protein/antagonists & inhibitors , beta Catenin/antagonists & inhibitors , Alkaloids/isolation & purification , Antineoplastic Agents, Phytogenic/isolation & purification , Benzodioxoles/isolation & purification , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , HCT116 Cells , HEK293 Cells , Humans , Piper nigrum/chemistry , Piperidines/isolation & purification , Polyunsaturated Alkamides/isolation & purification , TCF Transcription Factors/genetics , TCF Transcription Factors/metabolism , Wnt Signaling Pathway/genetics , Wnt3A Protein/genetics , Wnt3A Protein/metabolism , beta Catenin/genetics , beta Catenin/metabolism
7.
Nat Prod Res ; 32(11): 1365-1368, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28669243

ABSTRACT

Ethanol extracts obtained from Schinus terebinthifolius Raddi fruits and leaves were active against Escherichia coli with MIC of 78 µg mL-1 for both extracts. Phytochemical analyses revealed a major presence of phenolic acids, tannins, fatty acids and acid triterpenes in the leaves and phenolic acids, fatty acids, acid triterpenes and biflavonoids in the fruits. Major compounds isolated from the plant, such as the acid triterpene schinol, the phenolic acid derivative ethyl gallate and the biflavonoids agathisflavone and tetrahydroamentoflavone, showed very little activity against E. coli. Bioautography of the ethanol extracts on silica gel plate showed inhibition zones for E. coli. They were removed from the plate and the compounds identified as a mixture of myristic, pentadecanoic, palmitic, heptadecanoic, stearic, nonadecanoic, eicosanoic, heneicosanoic and behenic fatty acids.


Subject(s)
Anacardiaceae/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Plant Extracts/pharmacology , Anti-Bacterial Agents/chemistry , Biflavonoids/isolation & purification , Biflavonoids/pharmacology , Fruit/chemistry , Gallic Acid/analogs & derivatives , Gallic Acid/isolation & purification , Gallic Acid/pharmacology , Microbial Sensitivity Tests , Plant Extracts/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry , Triterpenes/isolation & purification , Triterpenes/pharmacology
8.
J Nat Prod ; 79(10): 2530-2537, 2016 10 28.
Article in English | MEDLINE | ID: mdl-27723329

ABSTRACT

The first natural occurrence in optically active form of the dimeric flavonoid agathisflavone and definition of its axial chirality using chiroptical spectroscopic methods are described. The experimental electronic circular dichroism, electronic dissymmetry factor, optical rotatory dispersion, vibrational circular dichroism (VCD), and vibrational dissymmetry factor spectra of agathisflavone are presented and analyzed with their corresponding quantum chemical predictions to definitively assign the axial chirality of (-)-agathisflavone as (aS).


Subject(s)
Biflavonoids/chemistry , Circular Dichroism , Molecular Conformation , Molecular Structure , Optical Rotatory Dispersion , Stereoisomerism
9.
Forensic Sci Int ; 266: 474-487, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27471991

ABSTRACT

The synthetic cannabinoids (SCs) represent the most recent advent of the new psychotropic substances (NPS) and has become popularly known to mitigate the effects of the Δ(9)-THC. The SCs are dissolved in organic solvents and sprayed in a dry herbal blend. However, little information is reported on active ingredients of SCs as well as the excipients or diluents added to the herbal blend. In this work, the direct infusion electrospray ionization Fourier transform ion cyclotron mass spectrometry technique (ESI-FT-ICR MS) was applied to explore the chemical composition of nine samples of herbal extract blends, where a total of 11 SCs (UR-144, JWH-073, XLR-11, JWH-250, JWH-122, AM-2201, AKB48, JWH-210, JWH-081, MAM-2201 and 5F-AKB48) were identified in the positive ionization mode, ESI(+), and other 44 chemical species (saturated and unsaturated fatty acids, sugars, flavonoids, etc.) were detected in the negative ionization mode, ESI(-). Additionally, CID experiments were performed, and fragmentation pathways were proposed to identify the connectivity of SCs. Thus, the direct infusion ESI-FT-ICR MS technique is a powerful tool in forensic chemistry that enables the rapid and unequivocal way for the determination of molecular formula, the degree of unsaturation (DBE-double bond equivalent) and exact mass (<1ppm) of a total of 55 chemical species without the prior separation step.


Subject(s)
Cannabinoids/chemistry , Substance Abuse Detection , Fourier Analysis , Humans , Limit of Detection , Spectrometry, Mass, Electrospray Ionization
10.
Rev. bras. farmacogn ; 26(3): 342-346, May-June 2016. tab, graf
Article in English | LILACS | ID: lil-784280

ABSTRACT

Abstract In hybrid cultivated form, Dendranthema grandiflorum (Ramat.) Kitam., Asteraceae, flowers (Chrysanthemum morifolium Ramat.) were utilized in the production of extracts, which were analyzed for larvicidal activity against Aedes aegypti third instar larvae. Methanol and dichloromethane extracts showed LC50 values of 5.02 and 5.93 ppm, respectively. Using GC–MS, phytochemical analyses of the dichloromethane extract showed the presence of triterpenoids and fatty acids, while flavonoids and caffeoylquinic acids were shown to occur in the methanol extract by ESI Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FT-ICR-MS). Triterpenoids and fatty acids are well known insecticidal compounds. From this study, it can be concluded that D. grandiflorum grown for floriculture, as an agribusiness, can have additional applications as raw material for the production of insecticidal products.

11.
Food Funct ; 6(10): 3257-65, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26237537

ABSTRACT

In models of metabolic disorders, cinnamon improves glucose and lipid metabolism. This study explores the effect of chronic supplementation with aqueous cinnamon extract (CE) on the lipid metabolism of rats. Male adult Wistar rats were separated into a control group (CTR) receiving water and a CE Group receiving aqueous cinnamon extract (400 mg of cinnamon per kg body mass per day) by gavage for 25 consecutive days. Cinnamon supplementation did not change the food intake or the serum lipid profile but promoted the following changes: lower body mass gain (P = 0.008), lower relative mass of white adipose tissue (WAT) compartments (P = 0.045) and higher protein content (percentage of the carcass) (P = 0.049). The CE group showed lower leptin mRNA expression in the WAT (P = 0.0017) and an important tendency for reduced serum leptin levels (P = 0.059). Cinnamon supplementation induced lower mRNA expression of SREBP1c (sterol regulatory element-binding protein 1c) in the WAT (P = 0.001) and liver (P = 0.013) and lower mRNA expression of SREBP2 (P = 0.002), HMGCoA reductase (3-hydroxy-3-methylglutaryl-CoA reductase) (P = 0.0003), ACAT1 (acetyl-CoA acetyltransferase 1) (P = 0.032) and DGAT2 (diacylglycerol O-acyltransferase 2) (P = 0.03) in the liver. These changes could be associated with the reduced esterified cholesterol and triacylglycerol content detected in this tissue. Our results suggest that chronic ingestion of aqueous cinnamon extract attenuates lipogenic processes, regulating the expression of key enzymes and transcriptional factors and their target genes, which are directly involved in lipogenesis. These molecular changes possibly promote adaptations that would prevent an increase in circulating cholesterol and triacylglycerol levels and prevent lipid accumulation in tissues, such as liver and WAT. Therefore, we speculate that cinnamon may also be useful for preventing or retarding the development of lipid disorders.


Subject(s)
Adipose Tissue/drug effects , Body Composition/drug effects , Cinnamomum zeylanicum/chemistry , Lipogenesis/drug effects , Liver/drug effects , Plant Extracts/pharmacology , Acetyl-CoA C-Acetyltransferase/genetics , Acetyl-CoA C-Acetyltransferase/metabolism , Adipose Tissue/metabolism , Animals , Body Mass Index , Body Weight , Cholesterol/blood , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Leptin/genetics , Leptin/metabolism , Liver/metabolism , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Proteins/genetics , Sterol Regulatory Element Binding Proteins/metabolism , Triglycerides/blood
12.
Article in English | MEDLINE | ID: mdl-26180533

ABSTRACT

Xanthosoma sagittifolium Schott is a herb of the Araceae family, popularly known as taioba, which is consumed as food in some regions of Brazil, Africa, and Asia. This species has already been evaluated for the antifungal activities. However, based on its potential antitumor activity, the present study further aimed to examine the antitumor, as well as chelation, activity of X. sagittifolium leaf extract. Results showed that hydroethanolic extract of X. sagittifolium leaves (HEXs-L) exhibits cytotoxic effects against the immortalized line of human T-lymphocytic (Jurkat) and myelogenous (K562) leukemia cells, but not nontumor RAW 264.7 macrophages or NIH/3T3 fibroblasts. HEXs-L inhibited 50.3% of Jurkat cell proliferation, reducing by 20% cells in G2/M phase, but increasing cells in sub-G1 phase, thereby inducing apoptosis by 54%. In addition, HEXs-L inhibited NO production by 59%, as determined by Griess reaction, and chelated 93.8% of free Fe(II), as demonstrated by ferrozine assay. Phytochemical studies were carried out by ESI-MS, identifying apigenin di-C-glycosides as major compounds. Overall, this work revealed that leaf extract of Xanthosoma sagittifolium presented chelating activity and in vitro antitumor activity, arresting cell cycle and inducing apoptosis of leukemia cells, thus providing evidence that taioba leaves may have practical application in cancer therapy.

13.
PLoS One ; 10(3): e0120919, 2015.
Article in English | MEDLINE | ID: mdl-25775405

ABSTRACT

Overactivation of the Wnt/ß-catenin pathway in adult tissues has been implicated in many diseases, such as colorectal cancer. Finding chemical substances that can prevent this phenomenon is an emerging problem. Recently, several natural compounds have been described as Wnt/ß-catenin inhibitors and might be promising agents for the control of carcinogenesis. Here, we describe two natural substances, derricin and derricidin, belonging to the chalcone subclass, that show potent transcriptional inhibition of the Wnt/ß-catenin pathway. Both chalcones are able to affect the cell distribution of ß-catenin, and inhibit Wnt-specific reporter activity in HCT116 cells and in Xenopus embryos. Derricin and derricidin also strongly inhibited canonical Wnt activity in vitro, and rescued the Wnt-induced double axis phenotype in Xenopus embryos. As a consequence of Wnt/ß-catenin inhibition, derricin and derricidin treatments reduce cell viability and lead to cell cycle arrest in colorectal cancer cell lines. Taken together, our results strongly support these chalcones as novel negative modulators of the Wnt/ß-catenin pathway and colon cancer cell growth in vitro.


Subject(s)
Antineoplastic Agents/pharmacology , Chalcones/pharmacology , Colonic Neoplasms/metabolism , Flavonoids/pharmacology , Hemiterpenes/pharmacology , Wnt Signaling Pathway , Animals , Cell Proliferation/drug effects , Chalcones/chemistry , HCT116 Cells , Hemiterpenes/chemistry , Humans , Xenopus , beta Catenin/genetics , beta Catenin/metabolism
14.
Parasit Vectors ; 7: 537, 2014 Nov 27.
Article in English | MEDLINE | ID: mdl-25428163

ABSTRACT

BACKGROUND: The arthropod-borne Mayaro virus (MAYV) causes 'Mayaro fever', a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Studies showed that the virus could also be transmitted by the mosquito Aedes aegypti. Recently, MAYV has attracted attention due to its likely urbanization. To date, there are no drugs that can treat this illness. METHODS: Fractions and compounds were obtained by chromatography from leaf extracts of C. australis and chemically identified as flavonoids and condensed tannins using spectroscopic and spectrometric techniques (UV, NMR, and ESI-FT-ICR MS). Cytotoxicity of EtOAc, n-BuOH and EtOAc-Pp fractions were measured by the dye-uptake assay while their antiviral activity was evaluated by a virus yield inhibition assay. Larvicidal activity was measured by the procedures recommended by the WHO expert committee for determining acute toxicity. RESULTS: The following group of substances was identified from EtOAc, n-BuOH and EtOAc-Pp fractions: flavones, flavonols, and their glycosides and condensed tannins. EtOAc and n-BuOH fractions inhibited MAYV production, respectively, by more than 70% and 85% at 25 µg/mL. EtOAc-Pp fraction inhibited MAYV production by more than 90% at 10 µg/mL, displaying a stronger antiviral effect than the licensed antiviral ribavirin. This fraction had an excellent antiviral effect (IC90 = 4.7 ± 0.3 µg/mL), while EtOAc and n-BuOH fractions were less active (IC90 = 89.1 ± 4.4 µg/mL and IC90 = 40.9 ± 5.7 µg/mL, respectively). CONCLUSIONS: C. australis can be used as a source of compounds with anti-Mayaro virus activity. This is the first report on the biological activity of C. australis.


Subject(s)
Alphavirus , Antiviral Agents/pharmacology , Cassia/chemistry , Plant Extracts/pharmacology , Animals , Antiviral Agents/chemistry , Chlorocebus aethiops , Plant Extracts/chemistry , Plant Leaves/chemistry , Vero Cells
15.
An Acad Bras Cienc ; 86(3): 1385-94, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25098311

ABSTRACT

Extracts of Echinodorus grandiflorus obtained from dried leaves by three different techniques were evaluated by bacterial lysogenic induction assay (Inductest) in relation to their genotoxic properties. Before being added to test cultures, extracts were sterilized either by steam sterilization or ultraviolet light. Only the extracts prepared by infusion and steam sterilized have shown genotoxic activity. The phytochemical analysis revealed the presence of the flavonoids isovitexin, isoorientin, swertisin and swertiajaponin, isolated from a genotoxic fraction. They were assayed separately and tested negative in the Inductest protocol. The development of browning color and sweet smell in extracts submitted to heat, prompted further chemical analysis in search for Maillard's reaction precursors. Several aminoacids and reducing sugars were cast in the extract. The presence of characteristic Maillard's melanoidins products was determined by spectrophotometry in the visible region and the inhibition of this reaction was observed when its characteristic inhibitor, sodium bisulfite, was added prior to heating. Remarkably, this is the first paper reporting on the appearance of such compounds in a phytomedicine preparation under a current phytopharmaceutical procedure. The genotoxic activity of such heat-prepared infusions imply in some risk of developing degenerative diseases for patients in long-term, uncontrolled use of such phytomedicines.


Subject(s)
Alismataceae/toxicity , DNA Damage/drug effects , DNA, Bacterial/drug effects , Plant Extracts/toxicity , Alismataceae/chemistry , Escherichia coli/drug effects , Escherichia coli/genetics , Mutagenicity Tests/methods
16.
Parasit Vectors ; 7: 130, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24678592

ABSTRACT

BACKGROUND: The arthropod-borne Mayaro virus (MAYV) causes 'Mayaro fever', a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Recently, MAYV has attracted attention due to its likely urbanization. Currently, there are no licensed drugs against most mosquito-transmitted viruses. Here, we investigated the in vitro anti-MAYV activity of the flavonoids quercetin and its derivatives from the Brazilian shrub Bauhinia longifolia (Bong.) Steud. METHODS: Flavonoids were purified by chromatographic fractionation from leaf extracts of B. longifolia and chemically identified as quercetin and quercetin glycosides using spectroscopic techniques. Cytotoxicity of purified flavonoids and of EtOAc- and n-BuOH-containing flavonoid mixtures was measured by the dye-uptake assay while their antiviral activity was evaluated by a virus yield inhibition assay. RESULTS: The following flavonoids were purified from B. longifolia leaves: non-glycosylated quercetin and its glycosides guaijaverin, quercitrin, isoquercitrin, and hyperin. EtOAc and n-BuOH fractions containing these flavonoids demonstrated the highest antiviral activity of all tested substances, while quercetin had the highest antiviral activity amongst purified flavonoids. Quercetin, EtOAc, or n-BuOH fractions inhibited MAYV production by more than 90% at 25 µg/mL, displaying a stronger antiviral effect than the licensed antiviral ribavirin. A mixture of the isomers isoquercitrin and hyperin had a modest antiviral effect (IC90 = 104.9), while guaijaverin and quercitrin did not show significant antiviral activity. CONCLUSIONS: B. longifolia is a good source of flavonoids with anti-Mayaro virus activity. This is the first report of the activity of quercetin and its derivatives against an alphavirus.


Subject(s)
Antioxidants/pharmacology , Antiviral Agents/pharmacology , Arboviruses/drug effects , Bauhinia/chemistry , Glycosides/pharmacology , Quercetin/pharmacology , Animals , Antioxidants/chemistry , Antiviral Agents/chemistry , Chlorocebus aethiops , Glycosides/chemistry , Molecular Structure , Plant Leaves/chemistry , Quercetin/chemistry , Vero Cells
17.
Nat Prod Commun ; 8(2): 207-10, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23513730

ABSTRACT

Bumelia sartorum (Sapotaceae) is used ethnomedicinally for treatment of several diseases, including diabetes mellitus. The aim of this work was to investigate the hypoglycemic effect of B. sartorum extracts, rich in polyphenolic compounds, and the possible mechanisms of action. Assessment of B. sartorum hypoglycemic activity was performed from the blood glucose level in normoglycemic mice after administration of the extract by oral gavage. The hypothesis that sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibition could prolong the increase in cytoplasmic Ca2+ concentration, thus leading to an increase of insulin release was evaluated. The enzyme inhibition was measured by ATP hydrolysis using SERCA1 isolated from rabbit skeletal muscle. The total content of phenolic compounds was determined by the Folin-Ciocalteau method. The ethyl acetate (EtOAc) partition and F5 fraction obtained from B. sartorum, both of them rich in polyphenolics, were shown to have a hypoglycemic effect on normoglycemic mice, more significant than that of the known antidiabetic drug, glibenclamide used as a standard comparable compound. Both samples significantly inhibited SERCA activity. Different extracts of B. sartorum, rich in polyphenolic compounds, were able to reduce blood glucose in normoglycemic mice and inhibit SERCA activity. SERCA inhibition may be one of the possible mechanisms involved in glucose decrease.


Subject(s)
Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Polyphenols/pharmacology , Sapotaceae/chemistry , Animals , Blood Glucose/analysis , Calcium/metabolism , Female , Mice , Rabbits , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors
18.
Rev. bras. farmacogn ; 21(6): 991-999, Nov.-Dec. 2011. ilus, graf, tab
Article in English | LILACS | ID: lil-602283

ABSTRACT

The ethanol extract of the vegetal species Pentaclethra macroloba (Willd.) Kuntze, Fabaceae, was fractioned and the antibacterial activity was determined. The active ethyl acetate (ea) fraction showed activity against Gram-positive (Staphylococcus spp. and Enterococcus spp.) and Gram-negative (Pseudomonas aeruginosa, Acinetobacter spp. and Klebsiella pneumoniae) multiresistant bacteria. Gallic acid derivatives were identified as the main compounds in inactive subfractions from the ea fraction, while the active one afforded ellagic acid as the major constituent when submitted to acid hydrolysis reaction, which suggests the presence of hydrolysable tannins. The minimum bactericidal concentration analysis showed a bactericide mechanism of action for the tannin subfraction found. The antibacterial mechanism of action of the active tannin subfraction against S. aureus reference strains (ATCC 29213 e 33591) was proposed adopting an in vitro assay of protein synthesis inhibition. For this, bacterial cells were labeled with [35S] methionine in the presence of the subfraction. The protein synthesis inhibition was observed at 256 µg/mL of this subfraction. At this concentration it did not present cytotoxicity in eukaryotic cells by the neutral red technique, suggesting selective toxicity. The present study is the first in vitro investigation of the antibacterial properties of tannin fractions obtained from a polar extract of P. macroloba.

19.
Rev. bras. farmacogn ; 21(1): 86-91, jan.-fev. 2011. tab
Article in English | LILACS | ID: lil-580357

ABSTRACT

In order to validate the Bumelia sartorum Mart., Sapotaceae, traditional use for infection diseases, this study evaluates the antibacterial activity of the stem bark fractions against methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) Staphylococcus aureus strains by using the agar dilution method and reported as MIC (minimal inhibitory concentration). In addition, the DPPH scavenging activity of these fractions was measured and the chemical composition and acute toxicity of the active fraction were also determined. The ethyl acetate (EtOAc) extract was chemically analyzed by LC/MS, direct ionization APCI/MS, ¹H NMR and 13C-NMR. All fractions, except butanol extract, presented high antioxidant activity, especially the methanol and the EtOAc extracts, which showed EC50 values (5.67 and 5.30 µg/mL, respectively) considerably lower than the Gingko-standard EGb 761® (38.58 µg/mL). The antibacterial activity against S. aureus strains was observed in EtOAc (MIC 256-512 µg/mL), which showed a very low toxicity. The chemical study of this fraction revealed the abundant presence of polyphenolic compounds. The antibacterial and antioxidant activities reported in this paper for EtOAc extract from B. sartorum and the low toxicity of this fraction opens the possibility that it could be helpful for the developing of new antibacterial agents for treating S. aureus infections.

20.
Nat Prod Commun ; 5(8): 1219-23, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20839623

ABSTRACT

Alpinia zerumbet plantlets were cultured in vitro in MS medium supplemented with growth regulators, including IAA, TDZ and BAP. Using high performance liquid chromatography (HPLC), the production of rutin, kaempferol-3-O-glucuronide, and kaempferol-3-O-rutinoside was evaluated, based on leaf hydroalcoholic extracts of three-month-old plantlets. The relative concentration of phenolics from the hydroalcoholic extracts of plantlets cultured in control medium reached 100% compared with plantlets treated with growth regulators and donor plants (80%). The in vitro rutin production was more pronounced than the other flavonoids. While no direct relation between the content of phenolic compounds and increased flavonoid production was observed, the combination of IAA + TDZ enhanced the production of rutin (83.2 microg/g dried leaves) and kaempferol-3-O-glucuronide (29 microg/g dried leaves), compared with growth regulators used alone. Overall, these findings suggest the value of in vitro cultivation as a means of enriching phenolic and flavonoid production in medicinal plants.


Subject(s)
Alpinia/metabolism , Flavonoids/biosynthesis , Kaempferols/biosynthesis , Rutin/biosynthesis , Alpinia/growth & development , Chromatography, High Pressure Liquid , Culture Media
SELECTION OF CITATIONS
SEARCH DETAIL
...