Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am Nat ; 202(2): 181-191, 2023 08.
Article in English | MEDLINE | ID: mdl-37531281

ABSTRACT

AbstractSeveral predictions of sperm competition theory are not well supported empirically. One potential reason is that most current theory and empirical research ignore how the social environment influence the temporal dynamics of mating. We propose that understanding these dynamics is key to understanding sexual selection and improving the predictive power of theory. To demonstrate the importance of these dynamics, we quantify how males' social role, interactions among males, and current social environment influence the timing of mating in Symphodus ocellatus, a species with three alternative male reproductive tactics. Nesting males spawn synchronously with females; sneakers and satellites sneak-spawn with some time delay. Satellites also cooperate with nesting males. We found that satellites have shorter sneak-spawning delays than sneakers, a benefit of their cooperation with nesting males. Sneak-spawning delays decreased with increasing nest activity for sneakers but not for satellites, suggesting that sneakers may benefit from increased sperm competition intensity. Current sperm competition models ignore this potential benefit, which may be why the prediction that males should decrease investment when sperm competition involves more than two males is not well supported. Our study provides insight into mechanisms that drive variation in the timing of spawning, which could explain mismatches between theoretical and empirical results.


Subject(s)
Perciformes , Sexual Behavior, Animal , Animals , Female , Male , Semen , Reproduction , Social Environment , Spermatozoa
2.
Evol Lett ; 7(4): 191-202, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37475752

ABSTRACT

In contrast to sexual selection on traits that affect interactions between the sexes before mating, little theoretical research has focused on the coevolution of postmating traits via cryptic female choice (when females bias fertilization toward specific males). We used simulation models to ask (a) whether and, if so, how nondirectional cryptic female choice (female-by-male interactions in fertilization success) causes deviations from models that focus exclusively on male-mediated postmating processes, and (b) how the risk of sperm competition, the strength of cryptic female choice, and tradeoffs between sperm number and sperm traits interact to influence the coevolutionary dynamics between cryptic female choice and sperm traits. We found that incorporating cryptic female choice can result in males investing much less in their ejaculates than predicted by models with sperm competition only. We also found that cryptic female choice resulted in the evolution of genetic correlations between cryptic female choice and sperm traits, even when the strength of cryptic female choice was weak, and the risk of sperm competition was low. This suggests that cryptic female choice may be important even in systems with low multiple mating. These genetic correlations increased with the risk of sperm competition and as the strength of cryptic female choice increased. When the strength of cryptic female choice and risk of sperm competition was high, extreme codivergence of sperm traits and cryptic female choice preference occurred even when the sperm trait traded off with sperm number. We also found that male traits lagged behind the evolution of female traits; this lag decreased with increasing strength of cryptic female choice and risk of sperm competition. Overall, our results suggest that cryptic female choice deserves more attention theoretically and may be driving trait evolution in ways just beginning to be explored.

3.
Am Nat ; 200(2): 217-235, 2022 08.
Article in English | MEDLINE | ID: mdl-35905406

ABSTRACT

AbstractBacterial symbionts are functionally integral to animal reproduction and development, some of which have evolved additional mechanisms to override these host programs. One habitat that is increasingly recognized to contain phylogenetically related lineages of reproductive manipulators is the ocean. The reproduction of marine invertebrates often occurs by free spawning instead of by the physical contact of copulation in terrestrial systems. We developed an integrated model to understand whether and when microbes that manipulate host reproduction by cytoplasmic incompatibility, feminization, and male killing spread within populations of free-spawning marine invertebrates. Our model supports three primary findings. First, sex ratio distortion leads to suboptimal fertilization and zygote production in planktotrophs (feeding larvae) but enhance these processes in lecithotrophs (nonfeeding larvae). Second, feminization and a combination of male killing plus enhanced growth are effective at spreading reproductive manipulators while also inducing a female-biased sex ratio. Third, the majority of free-spawning marine invertebrates could be infected across a range of life history combinations, with infections harming species with smaller eggs and longer pelagic durations while benefiting species with larger eggs and shorter pelagic durations. Together, this supports the general premise that microbes may manipulate the reproduction of free-spawning marine invertebrates (e.g., by inducing changes in developmental life history) and that these types of manipulations overlap considerably with terrestrial systems.


Subject(s)
Feminization , Reproduction , Animals , Ecosystem , Female , Humans , Invertebrates , Male , Sex Ratio
4.
Cells ; 10(9)2021 09 09.
Article in English | MEDLINE | ID: mdl-34572018

ABSTRACT

Sperm competition is a widespread phenomenon that shapes male reproductive success. Ejaculates present many potential targets for postcopulatory selection (e.g., sperm morphology, count, and velocity), which are often highly correlated and potentially subject to complex multivariate selection. Although multivariate selection on ejaculate traits has been observed in laboratory experiments, it is unclear whether selection is similarly complex in wild populations, where individuals mate frequently over longer periods of time. We measured univariate and multivariate selection on sperm morphology, sperm count, and sperm velocity in a wild population of brown anole lizards (Anolis sagrei). We conducted a mark-recapture study with genetic parentage assignment to estimate individual reproductive success. We found significant negative directional selection and negative quadratic selection on sperm count, but we did not detect directional or quadratic selection on any other sperm traits, nor did we detect correlational selection on any trait combinations. Our results may reflect pressure on males to produce many small ejaculates and mate frequently over a six-month reproductive season. This study is the first to measure multivariate selection on sperm traits in a wild population and provides an interesting contrast to experimental studies of external fertilizers, which have found complex multivariate selection on sperm phenotypes.


Subject(s)
Lizards/physiology , Spermatozoa/physiology , Animals , Female , Male , Phenotype , Sperm Count/methods
5.
Nat Ecol Evol ; 5(9): 1213-1223, 2021 09.
Article in English | MEDLINE | ID: mdl-34373620

ABSTRACT

Racial and ethnic discrimination persist in science, technology, engineering and mathematics fields, including ecology, evolution and conservation biology (EECB) and related disciplines. Marginalization and oppression as a result of institutional and structural racism continue to create barriers to inclusion for Black people, Indigenous people and people of colour (BIPOC), and remnants of historic racist policies and pseudoscientific theories continue to plague these fields. Many academic EECB departments seek concrete ways to improve the climate and implement anti-racist policies in their teaching, training and research activities. We present a toolkit of evidence-based interventions for academic EECB departments to foster anti-racism in three areas: in the classroom; within research laboratories; and department wide. To spark restorative discussion and action in these areas, we summarize EECB's racist and ethnocentric histories, as well as current systemic problems that marginalize non-white groups. Finally, we present ways that EECB departments can collectively address shortcomings in equity and inclusion by implementing anti-racism, and provide a positive model for other departments and disciplines.


Subject(s)
Racism , Black or African American , Ecology , Engineering , Humans , Population Groups
6.
Philos Trans R Soc Lond B Biol Sci ; 375(1813): 20200075, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33070732

ABSTRACT

Males that exhibit alternative reproductive tactics (ARTs) often differ in the risk of sperm competition and the energetic trade-offs they experience. The resulting patterns of selection could lead to between-tactic differences in ejaculate traits. Despite extensive research on male ARTs, there is no comprehensive review of whether and what differences in sperm traits exist between male ARTs. We review existing theory on ejaculate evolution relevant to ARTs and then conduct a comprehensive vote-counting review of the empirical data comparing sperm traits between males adopting ARTs. Despite the general expectation that sneaker males should produce sperm that are more competitive (e.g. higher quality or performance), we find that existing theory does not predict explicitly how males adopting ARTs should differ in sperm traits. The majority of studies find no significant difference in sperm performance traits between dominant and sneaker males. However, when there is a difference, sneaker males tend to have higher sperm performance trait values than dominant males. We propose ways that future theoretical and empirical research can improve our understanding of the evolution of ejaculate traits in ARTs. We then highlight how studying ejaculate traits in species with ARTs will improve our broader knowledge of ejaculate evolution. This article is part of the theme issue 'Fifty years of sperm competition'.


Subject(s)
Sexual Behavior, Animal/physiology , Spermatozoa/physiology , Animals , Male , Reproduction
7.
Oecologia ; 191(3): 555-564, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31624957

ABSTRACT

Given that sperm production can be costly, theory predicts that males should optimally adjust the quantity and/or quality of their sperm in response to their social environment to maximize their paternity success. Although experiments demonstrate that males can alter their ejaculates in response to manipulations of the social environment and studies show that ejaculate traits covary with social environment across populations, it is unknown whether individual variation in sperm traits corresponds to natural variation found within wild populations. Using an island population of brown anole lizards (Anolis sagrei), we tested the prediction that sperm traits (sperm count, sperm morphology, sperm velocity) respond to natural variation in the risk of sperm competition, as inferred from the local density and operational sex ratio (OSR) of conspecifics. We found that males living in high-density areas of the island produced relatively larger sperm midpieces, smaller sperm heads, and lower sperm counts. Sperm traits were unrelated to OSR after accounting for the covariance between OSR and density. Our findings broaden the implications of sperm competition theory to intrapopulation social environment variation by showing that sperm count and sperm morphology vary with fine-scale differences in density within a single wild population.


Subject(s)
Lizards , Animals , Islands , Male , Phenotype , Sex Ratio , Sexual Behavior, Animal , Spermatozoa
SELECTION OF CITATIONS
SEARCH DETAIL
...