Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(32): 23139-23146, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39045401

ABSTRACT

Zinc oxide nanoparticles (ZnO-NPs) have provided promising potential in the biomedical field, including the ability to overcome various health problems. Diosgenin is used to treat multiple health disorders but has very low solubility in water. Using ZnO-NPs as a diosgenin delivery vehicle was expected to increase the solubility of diosgenin, which would affect its bioavailability. This study demonstrates phytofabrication and characterization of ZnO-NPs, loading of diosgenin onto the ZnO-NPs, characterization of the product (ZnO-NPs/diosgenin), and evaluations of diosgenin release. Phytofabrication of the ZnO-NPs was carried out with zinc precursors and Hibiscus tiliaceus leaf extract (HLE) obtained with various extraction solvents. To explore the potential of using the ZnO-NPs as a diosgenin delivery vehicle, diosgenin release from the ZnO-NPs/diosgenin was studied. Based on the X-ray fluorescence (XRF) and X-ray diffraction (XRD) results, ZnO-NPs with high purity have been successfully fabricated. Nano-sized particles were detected using scanning electron microscopy (SEM) and confirmed by transmission electron microscopy (TEM), revealing the smallest particle size of 45.924 ± 27.910 nm obtained from the methanol extract with the zinc acetate precursor. The ZnO-NPs had hexagonal wurtzite and rod-like structures. Diosgenin was successfully added to the ZnO-NPs with loadings of 79.972% for ZnO-HLMEA-D500 (ZnO-NPs/diosgenin produced by doping with a 500 µg mL-1 of diosgenin solution) and 39.775% for ZnO-HLMEA-D1000 (ZnO-NPs/diosgenin produced by doping with a 1000 µg mL-1 of diosgenin solution). The solubilities of diosgenin from ZnO-HLMEA-D500 and ZnO-HLMEA-D1000 were higher than that of free diosgenin, confirming that ZnO-NPs have potential as delivery vehicles for diosgenin and conceivably other water-insoluble drugs.

2.
ACS Omega ; 9(23): 25251-25264, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882161

ABSTRACT

Sugar cane bagasse (SB) was modified with cetyltrimethylammonium bromide (CTAB), followed by impregnation with zinc oxide (ZnO) to create a synergistic adsorption and photocatalytic system for methyl orange (MO) and methylene blue (MB) removal. The presence of CTAB and ZnO was confirmed by X-ray diffraction, Fourier transform infrared, and energy dispersive X-ray (for Zn and O). Modification of SB with CTAB (CSB) generated more positive sites on the surface of SB, which enhanced MO removal compared with that of pristine SB. ZnO impregnation induces a decrease in MO removal due to the ZnO presence on the CSB surface, which might reduce the positive sites on the CSB. In addition, the positive sites on CSB can interact with Zn2+ and O2- to form ZnO and lead to a decrease in MO removal. In contrast, the presence of ZnO facilitated good removal of MB compared to CSB, indicating that the photocatalytic process plays a greater role in removing MB. However, the addition of H2O2 can improve MO and MB removal under irradiation due to the formation of external •OH. The photocatalytic performance of MO and MB was also observed to be favored under acidic and alkaline conditions, respectively.

3.
ACS Appl Mater Interfaces ; 15(47): 54677-54691, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37966967

ABSTRACT

Rational design is an important approach to consider in the development of low-dimensional hybrid organic-inorganic perovskites (HOIPs). In this study, 1-butyl-1-methyl pyrrolidinium (BMP), 1-(3-aminopropyl)imidazole (API), and 1-butyl-3-methyl imidazolium (BMI) serve as prototypical ionic liquid components in bismuth-based HOIPs. Element-sensitive X-ray absorption spectroscopy measurements of BMPBiBr4 and APIBiBr5 reveal distinct resonant excitation profiles across the N K-edges, where contrasting peak shifts are observed. These 1D-HOIPs exhibit a large Stokes shift due to the small polaron contribution, as probed by photoluminescence spectroscopy at room temperature. Interestingly, the incorporation of a small fraction of tin (Sn) into the APIBiBr5 (Sn/Bi mole ratio of 1:3) structure demonstrates a strong spectral weight transfer accompanied by a fast decay lifetime (2.6 ns). These phenomena are the direct result of Sn-substitution in APIBiBr5, decreasing the small polaron effect. By changing the active ionic liquid, the electronic interactions and optical responses can be moderately tuned by alteration of their intermolecular interaction between the semiconducting inorganic layers and organic moieties.

4.
J Colloid Interface Sci ; 650(Pt B): 1550-1590, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37490835

ABSTRACT

Tricobalt tetroxide (Co3O4) has been developed as a promising photocatalyst material for various applications. Several reports have been published on the self-modification of Co3O4 to achieve optimal photocatalytic performance. The pristine Co3O4 alone is inadequate for photocatalysis due to the rapid recombination process of photogenerated (PG) charge carriers. The modification of Co3O4 can be extended through the introduction of doping elements, incorporation of supporting materials, surface functionalization, metal loading, and combination with other photocatalysts. The addition of doping elements and support materials may enhance the photocatalysis process, although these modifications have a slight effect on decreasing the recombination process of PG charge carriers. On the other hand, combining Co3O4 with other semiconductors results in a different PG charge carrier mechanism, leading to a decrease in the recombination process and an increase in photocatalytic activity. Therefore, this work discusses recent modifications of Co3O4 and their effects on its photocatalytic performance. Additionally, the modification effects, such as enhanced surface area, generation of oxygen vacancies, tuning the band gap, and formation of heterojunctions, are reviewed to demonstrate the feasibility of separating PG charge carriers. Finally, the formation and mechanism of these modification effects are also reviewed based on theoretical and experimental approaches to validate their formation and the transfer process of charge carriers.

5.
Analyst ; 148(13): 2932-2940, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37199245

ABSTRACT

Simple electrochemical detection of the antibiotic amoxicillin (AMX) in water is crucial to mitigate health and environmental risks; however, the process requires single-use electrodes, which can increase the waste generated as well as the cost. Cellulose nanofibers (CNFs) are biodegradable materials that can be used as electrode frameworks. In this study, a sensitive single-use CNF-based printed electrode modified with polybenzimidazole (PBI)-wrapped multi-walled carbon nanotubes (MWCNTs) is developed for AMX detection. The CNF-based printed electrode achieved a detection limit of 0.3 µM and exhibited a wider detection range of 0.3-500 µM compared with electrodes developed in previous studies. In addition, the electrode reactions of AMX were electrochemically investigated and found to primarily involve the adsorbed species at low AMX concentrations and be diffusion-controlled at high AMX concentrations. Finally, the printed electrodes were used for the easy and practical determination of AMX in seawater and tap water by a soaking method. Satisfactory results were obtained, and the final concentrations of AMX were determined using simple calibration equations. Therefore, this CNF-based electrode exhibits great potential for practical real-time AMX detection in the field.


Subject(s)
Nanofibers , Nanotubes, Carbon , Amoxicillin , Electrodes , Water , Electrochemical Techniques
6.
RSC Adv ; 13(21): 14236-14248, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37180015

ABSTRACT

Optimization of hierarchical ZSM-5 structure by variation of the first hydrothermal step at different times provides insight into the evolution of micro/mesopores and its effect as a catalyst for deoxygenation reaction. The degree of tetrapropylammonium hydroxide (TPAOH) incorporation as an MFI structure directing agent and N-cetyl-N,N,N-trimethylammonium bromide (CTAB) as a mesoporogen was monitored to understand the effect towards pore formation. Amorphous aluminosilicate without the framework-bound TPAOH achieved within 1.5 h of hydrothermal treatment provides flexibility to incorporate CTAB for forming well-defined mesoporous structures. Further incorporation of TPAOH within the restrained ZSM-5 framework reduces the flexibility of aluminosilicate gel to interact with CTAB to form mesopores. The optimized hierarchical ZSM-5 was obtained by allowing hydrothermal condensation at 3 h, in which the synergy between the readily formed ZSM-5 crystallites and the amorphous aluminosilicate generates the proximity between micropores and mesopores. A high acidity and micro/mesoporous synergy obtained after 3 h exhibit 71.6% diesel hydrocarbon selectivity because of the improved diffusion of reactant within the hierarchical structures.

7.
RSC Adv ; 13(18): 12320-12343, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37091612

ABSTRACT

In this study, template-free mesoporous UiO-66(U) has been successfully synthesized in shortened time by sonochemical methods and provided energy savings. The synthesized mesoporous UiO-66(U) demonstrated irregular morphology particle around 43.5 nm according to the SEM image. The N2 adsorption-desorption isotherm indicated an irregular, 8.88 nm pore width mesoporous structure. Ultrasonic irradiation waves greatly altered mesoporous materials. A mechanism for mesoporous UiO-66(U) formation has been proposed based on the present findings. Sonochemical-solvent heat saves 97% more energy than solvothermal. Mesoporous UiO-66(U) outperformed solvothermal-synthesized UiO-66(S) in adsorption. These studies exhibited that mesopores in UiO-66 promote dye molecule mass transfer (MO, CR, and MB). According to kinetics and adsorption isotherms, the pseudo-second-order kinetic and Langmuir isotherm models matched experimental results. Thermodynamic studies demonstrated that dye adsorption is spontaneous and exothermically governed by entropy, not enthalpy. Mesoporous UiO-66(U) also showed good anionic dye selectivity in mixed dye adsorption. Mesoporous UiO-66(U) may be regenerated four times while maintaining strong adsorption capability.

8.
RSC Adv ; 13(13): 8985-8995, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36936853

ABSTRACT

River water has become contaminated with numerous hazardous compounds due to the rapid rise in population and industry expansion. Due to unchecked population growth and the improper disposal of electroplating industrial waste, issues with river water filtration and the elimination of chromium contamination have developed. Various technologies have been developed to overcome these problems. One of the technologies that have been proposed until now is membrane technology. On the other hand, the waste from plastic bottles, which grows yearly and now weighs 381.73 million tons, can create thin films or layers. Therefore, there is a lot of potential in employing plastic bottle trash as a low-cost, sustainable, and eco-friendly membrane material. In this study, the immersion-precipitation phase inversion method was used in the membrane preparation process from plastic bottle waste by modifying fillers (zeolite-NaY) and additives (LiCl and PEG-400) to improve membrane performance. The effect of filler and additive modification on the fabricated membrane was studied for its performance in water purification and chromium ion contaminant removal. The results demonstrated that the modified LiCl membrane performed optimally for water purification and the removal of chromium ions, along with a reduction in turbidity to 1.42 NTU (from 400 NTU) and a 54.75% removal of chromium.

9.
RSC Adv ; 13(6): 3818-3834, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36756550

ABSTRACT

Mesoporous heterojunction MOF-derived α-Fe2O3/ZnO composites were prepared by a simple calcination of α-Fe2O3/ZIF-8 as a sacrificial template. The optical properties confirm that coupling of both the modified pore and the n-n heterojunction effectively reduces the possibility of photoinduced charge carrier recombination under irradiation. The mesoporous Fe(25)ZnO with 25% loading of α-Fe2O3 exhibited the best performance in MB degradation, up to ∼100% after 150 minutes irradiation, higher than that of pristine ZnO and α-Fe2O3. Furthermore, after three cycles reusability, mesoporous Fe(25)ZnO still showed an excellent stability performance of up to 95.42% for degradation of MB. The proposed photocatalytic mechanism of mesoporous Fe(25)ZnO for the degradation of MB corresponds to the n-n heterojunction system. This study provides a valuable reference for preparing mesoporous MOF-derived metal oxides with an n-n heterojunction system to enhance MB photodegradation.

10.
Heliyon ; 8(3): e09121, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35846445

ABSTRACT

Ionic liquid cations (ILCs) have been utilized in hybrid organic-inorganic perovskites (HOIPs) to enhance their photoluminescence performance. However, the high number of possible cations and anions needed to form ILCs makes the experimental measurement time and cost consuming. Computational methods that could assist the selection of ILCs for this task-specific application are highly desirable. Therefore, in this work, the photophysical properties of various ILCs, including linear aliphatic, five-membered, and six-membered cyclic aliphatic, and aromatic ILCs, were investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT). Fluorescence and phosphorescence were analyzed using excited state dynamics (ESD) modules on ORCA at the B3LYP/def2TZVP level theory. All the investigated cations show fluorescence spectra either the UV or visible range. The cations with long-chain branches show fluorescence spectra in the visible range. Five membered rings show the phosphorescence spectra in the visible range, while the six-membered rings show the phosphorescence spectra in the near-infrared range.

11.
RSC Adv ; 12(9): 5665-5676, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35425563

ABSTRACT

ZSM-5/graphitic carbon nitride (g-C3N4) composites were successfully prepared using a simple solvothermal method. By varying the amount of ZSM-5 and g-C3N4 in the composites, the charge carrier (electrons and holes) transfer within the materials, which contributes to the enhanced photocatalytic performance, was unraveled. The X-ray diffraction (XRD), Fourier-transform infrared (FTIR), and scanning electron microscopy (SEM) analysis revealed that more ZSM-5 component leads to a stronger interaction with g-C3N4. The photocatalytic performance test toward methylene blue (MB) degradation shows that more ZSM-5 in the composites is beneficial in enhancing photocatalytic activity. Meanwhile, the impedance electron spectroscopy (EIS) and photoluminescence (PL) analysis revealed that ZSM-5 facilitates the charge carrier transfer of photogenerated electrons and holes from g-C3N4 to the catalyst surface due to its lower charge transfer resistance. During the charge carrier migration, the interface between g-C3N4 and ZSM-5 particles may induce higher resistance for the charge carrier transfer, however after passing through the interface from g-C3N4 to ZSM-5 particles, the charge carrier can be efficiently transferred to the surface, hence suppressing the charge carrier recombination.

12.
Heliyon ; 7(12): e08436, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34917788

ABSTRACT

While the development of dye-sensitized solar cells (DSSCs) has been ongoing for more than 30 years, the currently obtained efficiency is unsatisfactory. However, the study of DSSC development has produced a fundamental understanding of cell performance and inspired other devices, such as perovskite cell solar cells. DSSCs consist of a dye-sensitized photoanode, a counter electrode, and a redox couple in the electrolyte system. Each of the components has an important role and cofunctions with each other to obtain a high power conversion efficiency. Various modifications to each DSSC component have been applied to improve their performance. Additionally, to generate improvements, the effort to reduce production costs has been crucial. The utilization of natural sources for DSSC components is a possible solution to this issue. The utilization of natural resources also aims to increase the value of the natural resource itself. In this review, the applications of various natural sources for DSSC components are described, as well as the modification efforts that have been made to enhance their performance. The discussion covers the utilization of natural dye for sensitizer dyes in liquid DSSC applications: (1) utilization of biopolymers for quasi-solid DSSC electrolytes, (2) green synthesis methods for photoanode semiconductors, and (3) development of natural carbon counter electrodes. The detailed factors that influence improvements in cell performance are also addressed.

13.
Environ Sci Pollut Res Int ; 28(28): 37354-37370, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33712959

ABSTRACT

Red mud as industrial waste from bauxite was utilized as a precursor for the synthesis of mesoporous ZSM-5. A high concentration of iron oxide in red mud was successfully removed using alkali fusion treatment. Mesoporous ZSM-5 was synthesized using cetyltrimethylammonium bromide (CTABr) as a template via dual-hydrothermal method, and the effect of crystallization time was investigated towards the formation of mesopores. Characterization using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) indicated the formation of cubic crystallite ZSM-5 with high surface area and mesopore volume within 6 h of crystallization. Increasing the crystallization time revealed the evolution of highly crystalline ZSM-5; however, the surface area and mesoporosity were significantly reduced. The effect of mesoporosity was investigated on the adsorption of methylene blue (MB). Kinetic and thermodynamic analysis of MB adsorption on mesoporous ZSM-5 was carried out at a variation of adsorption parameters such as the concentration of MB solution, the temperatures of solution, and the amount of adsorbent. Finally, methanol, 1-butanol, acetone, hydrochloric acid (HCl), and acetonitrile were used as desorbing agents to investigate the reusability and stability of mesoporous ZSM-5 as an adsorbent for MB removal.


Subject(s)
Methylene Blue , Water Pollutants, Chemical , Adsorption , Kinetics , Microscopy, Electron, Transmission , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
14.
Phys Chem Chem Phys ; 21(44): 24518-24526, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31663557

ABSTRACT

Ionic liquids are considered as emergent pollutants as these compounds possess high persistence in aqueous solution and toxicity toward aquatic organisms. In this work, the adsorption equilibrium of 27 ionic liquids, with different cation head groups, alkyl chain lengths, and anions, onto ZSM-5 was measured experimentally at several compositions and at temperature 298.15 K and 0.1 MPa. The extensive number of ionic liquids studied allows a comprehensive study on the impact of adsorbate chemical structures toward their adsorption process. The gathered experimental results show that the anions have a dominant effect, when compared to the cation head group and the alkyl chain length, in ruling the adsorption of ionic liquids from aqueous solution onto ZSM-5. The adsorption isotherms reveal that the adsorption process is a combination between Langmuir and Freundlich behaviors, with the latter leading the general process. Moreover, computational modelling using COSMO-RS demonstrates the existence of several molecular forces that rule the adsorption process, reinforcing the idea that the ionic liquid anion rules the adsorption. The results collected in the present work provide new understanding on the molecular mechanism for the development of efficient adsorbents for removal and recovery of ionic liquids from aqueous solution.

15.
J Hazard Mater ; 317: 52-59, 2016 11 05.
Article in English | MEDLINE | ID: mdl-27262272

ABSTRACT

TiO2 nanoparticles are suitable building blocks nanostructures for the synthesis of porous functional thin films. Here we report the preparation of films using brookite, P25 titania and anatase pristine nanoparticles and of nanocomposite layers combining anatase nanoparticles and multi-walled carbon nanotube (MWCNT) at various concentrations. The structure and phase composition of the layers were characterized by X-ray diffraction and Raman spectroscopy. Their morphology and texture properties were determined by scanning electron microscopy and krypton adsorption experiments, respectively. Additionally to a strong absorption in the UV range, the composites exhibited light absorption in the visible range as well. The photocatalytic performance of the layers was tested in the degradation of aqueous solutions of 4-chlorophenol serving as a model of an eco-persistent pollutant. Besides the determination of the decrease in the concentration of 4-chlorophenol, also the formation of intermediate degradation products, namely hydroquinone and benzoquinone, was followed. The presence of MWCNTs had a beneficial effect on the photocatalytic performance, a marked increase in the photocatalytic degradation rate constant being observed even at very low concentrations of MWCNTs. Compared to a P25 reference layer, the first order rate reaction constant increased by about 100% for the composite films containing MWCNTs at concentrations above 0.6 wt%. The key parameters for the enhancement of the photocatalytic performance are discussed. The presence of carbon nanotubes influences beneficially the degradation of 4-chlorophenol by an attack of the primarily photoproduced hydroxyl radicals onto the 4-chlorophenol molecules. The degradation due to the direct charge transfer is practically not influenced at all.

SELECTION OF CITATIONS
SEARCH DETAIL
...