Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(13): e202203547, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36464911

ABSTRACT

A multi-stage core-expansion method is proposed here as one component of the integrative binding-site/extender/core-expansion (BEC) strategy. The conceptual deconstruction of the partitioning ligand into three editable parts draws our focus onto progressive core expansion and allows the optimization of both acetylene uptake and selectivity. The effectiveness of this strategy is shown through a family of eight cationic pore-partitioned materials containing three different partitioning ligands and various counter anions. The optimized structure, Co3 -cpt-tph-Cl (Hcpt=4-(p-carboxyphenyl)-1,2,4-triazole, H-tph=(2,5,8-tri-(4-pyridyl)-1,3,4,6,7,9-hexaazaphenalene) with the largest surface area and highest C2 H2 uptake capacity (200 cm3 /g at 298 K), also exhibits (desirably) the lowest CO2 uptake and hence the highest C2 H2 /CO2 selectivity. The successful boost in both C2 H2 capacity and IAST selectivity allows Co3 -cpt-tph-Cl to rank among the best crystalline porous materials, ionic MOFs in particular, for C2 H2 uptake and C2 H2 /CO2 experimental breakthrough separation.

2.
Nanomaterials (Basel) ; 14(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38202522

ABSTRACT

Liver-targeting nanoparticles have emerged as a promising platform for the induction of immune tolerance by taking advantage of the liver's unique tolerogenic properties and nanoparticles' physicochemical flexibility. Such an approach provides a versatile solution to the treatment of a diversity of immunologic diseases. In this review, we begin by assessing the design parameters integral to cell-specific targeting and the tolerogenic induction of nanoplatforms engineered to target the four critical immunogenic hepatic cells, including liver sinusoidal epithelial cells (LSECs), Kupffer cells (KCs), hepatic stellate cells (HSCs), and hepatocytes. We also include an overview of multiple therapeutic strategies in which nanoparticles are being studied to treat many allergies and autoimmune disorders. Finally, we explore the challenges of using nanoparticles in this field while highlighting future avenues to expand the therapeutic utility of liver-targeting nanoparticles in autoimmune processes.

3.
Chemistry ; 28(52): e202201576, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-35732585

ABSTRACT

Two new rod-packing metal-organic frameworks (RPMOF) are constructed by regulating the in situ formation of the capping agent. In CPM-s7, carboxylate linkers extend 1D manganese-oxide chains in four additional directions, forming 3D RPMOF. The substitution of Mn2+ with a stronger Lewis acidic Co2+ , leads to an acceleration of the hydrolysis-prone sulfonate linker, resulting in presence of sulfate ions to reduce two out of the four carboxylate-extending directions, and thus forming a new 2D rod-packing CPM-s8. Density functional theory calculations and magnetization measurements reveal ferrimagnetic ordering of CPM-s8, signifying the potential of exploring 2D RPMOF for effective low-dimensional magnetic materials.

4.
Angew Chem Int Ed Engl ; 61(13): e202116064, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35098623

ABSTRACT

We report here a strategy for making anionic pacs type porous materials by combining pore space partition with charge reallocation. The method uses the first negatively charged pore partition ligand (2,5,8-tri-(4-pyridyl)-1,3,4,6,7,9-hexaazaphenalene, H-tph) that simultaneously enables pore partition and charge reallocation. Over two dozen anionic pacs materials have been made to demonstrate their excellent chemical stability and a high degree of tunability. Notably, Ni3 -bdt-tph (bdt=1,4-benzeneditetrazolate) exhibits month-long water stability, while CoV-bdt-tph sets a new benchmark for C2 H2 storage capacity under ambient conditions for ionic MOFs. In addition to tunable in-framework modules, we show feasibility to tune the type and concentration of extra-framework counter cations and their influence on both stability and capability to separate industrial C3 H8 /C3 H6 and C6 H6 /C6 H12 mixtures.

5.
ACS Appl Mater Interfaces ; 13(44): 52160-52166, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34236170

ABSTRACT

The development of effective propane (C3H8)-selective adsorbents for the purification of propylene (C3H6) from C3H8/C3H6 mixture is a promising alternative to replace the energy-intensive cryogenic distillation. However, few materials possess the dual desirable features of propane selectivity and high uptake capacity. Here, we report a family of pore-space-partitioned crystalline porous materials (CPM) with remarkable C3H8 uptake capacity (up to 10.9 mmol/g) and the highly desirable yet uncommon C3H8 selectivity (up to 1.54 at 0.1 bar and 1.44 at 1 bar). The selectivity-capacity synergy endows them with record-performing C3H8/C3H6 separation potential (i.e., C3H6 recovered from the mixture). Moreover, these CPMs exhibit outstanding properties including high stability, low regeneration energy, and multimodular chemical and geometrical tunability within the same isoreticular framework. The high C3H8/C3H6 separation performance was further confirmed by the breakthrough experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...