Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Astron (Dordr) ; 56(2-3): 355-370, 2023.
Article in English | MEDLINE | ID: mdl-38145002

ABSTRACT

POLAR-2, a plastic scintillator based Compton polarimeter, is currently under development and planned for a launch to the China Space Station in 2025. It is intended to shed a new light on our understanding of Gamma-Ray Bursts by performing high precision polarization measurements of their prompt emission. The instrument will be orbiting at an average altitude of 383 km with an inclination of 42° and will be subject to background radiation from cosmic rays and solar events. In this work, we tested the performance of plastic scintillation bars, EJ-200 and EJ-248M from Eljen Technology, under space-like conditions, that were chosen as possible candidates for POLAR-2. Both scintillator types were irradiated with 58 MeV protons at several doses from 1.89 Gy(corresponding to about 13 years in space for POLAR-2) up to 18.7 Gy, that goes far beyond the expected POLAR-2 life time. Their respective properties, expressed in terms of light yield, emission and absorption spectra, and activation analysis due to proton irradiation are discussed. Scintillators activation analyses showed a dominant contribution of ß + decay with a typical for this process gamma-ray energy line of 511 keV.

2.
Radiat Prot Dosimetry ; 199(15-16): 1937-1940, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37819291

ABSTRACT

The radioluminescence (RL) emitted by LiMgPO4 detector under proton beam irradiation was investigated in real time at the radiotherapy facility in the Institute of Nuclear Physics Polish Academy of Sciences in Krakow. The facility uses protons accelerated by the AIC-144 isochronous cyclotron up to the energy of 60 MeV. The measurements of RL were carried out using a remote optical fiber device with a luminophore detector and photomultiplier located at opposite ends of the optical fiber. A thin slice of LiMgPO4 doped with Tm (1.2 mol%) crystal was exposed to the proton beam. The tested detector allowed for the measurement of proton beam current, flux fluence and determination of proton beam time structure parameters. The investigation of LiMgPO4 crystal showed its high sensitivity, fast reaction time to irradiation and possibility of application as the detector for control of proton beam parameters.


Subject(s)
Cyclotrons , Proton Therapy , Quality Control , Radiotherapy Dosage , Radiotherapy , Cyclotrons/instrumentation , Cyclotrons/standards , Luminescence , Poland , Proton Therapy/instrumentation , Proton Therapy/standards , Protons , Radioactivity , Radiotherapy/standards , Radiotherapy Dosage/standards , Metals, Light
3.
Exp Astron (Dordr) ; 55(2): 343-371, 2023.
Article in English | MEDLINE | ID: mdl-37063519

ABSTRACT

POLAR-2 is a space-borne polarimeter, built to investigate the polarization of Gamma-Ray Bursts and help elucidate their mechanisms. The instrument is targeted for launch in 2024 or 2025 aboard the China Space Station and is being developed by a collaboration between institutes from Switzerland, Germany, Poland and China. The instrument will orbit at altitudes between 340km and 450km with an inclination of 42 ∘ and will be subjected to background radiation from cosmic rays and solar events. It is therefore pertinent to better understand the performance of sensitive devices under space-like conditions. In this paper we focus on the radiation damage of the silicon photomultiplier arrays S13361-6075NE-04 and S14161-6050HS-04 from Hamamatsu. The S13361 are irradiated with 58MeV protons at several doses up to 4.96Gy, whereas the newer series S14161 are irradiated at doses of 0.254Gy and 2.31Gy. Their respective performance degradation due to radiation damage are discussed. The equivalent exposure time in space for silicon photomultipliers inside POLAR-2 with a dose of 4.96Gy is 62.9years (or 1.78years when disregarding the shielding from the instrument). Primary characteristics of the I-V curves are an increase in the dark current and dark counts, mostly through cross-talk events. Annealing processes at 25 ∘ C were observed but not studied in further detail. Biasing channels while being irradiated have not resulted in any significant impact. Activation analyses showed a dominant contribution of ß + particles around 511 keV. These resulted primarily from copper and carbon, mostly with decay times shorter than the orbital period.

SELECTION OF CITATIONS
SEARCH DETAIL
...