Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 18(47): 9037-9044, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36409202

ABSTRACT

In this study glucose particles were successfully transformed to conducting carbonaceous microspheres through sequential hydrothermal and thermal carbonization. The prepared carbonaceous particles were thereafter used as a dispersed phase in a novel electrorheological fluid. Due to significant enhancements of the conductivity and dielectric properties when compared with the glucose precursor, the prepared electrorheological fluid based on carbonaceous microspheres exhibited a yield stress of over 200 Pa at a particle concentration of 5 wt% at an electric field intensity of 3 kV mm-1, and overcomes recently published novel electrorheological fluids and others based on carbonized particles. In order to estimate the exact rheological parameters, the measured data were treated using a mathematical model Cho-Choi-Jhon, and the reproducibility and reversible possibility to control the viscosity of the novel prepared electrorheological fluid were confirmed through time dependence tests at various electric field intensities. Not only did this approach lead to carbonaceous conducting particles with high performance in electrorheology, but the yield after carbonization at 500 °C was also 60%. It was thus confirmed that unique carbonaceous conducting particles were prepared using a sustainable method giving high yields, and can be potentially used in many other applications where such carbonaceous particles are required.

2.
Int J Mol Sci ; 23(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35628288

ABSTRACT

In this study, cellulose was carbonized in two-steps using hydrothermal and thermal carbonization in sequence, leading to a novel carbonaceous material prepared from a renewable source using a sustainable method without any chemicals and, moreover, giving high yields after a treatment at 600 °C in an inert atmosphere. During this treatment, cellulose was transformed to uniform microspheres with increased specific surface area and, more importantly, conductivity increased by about 7 orders of magnitude. The successful transition of cellulose to conducting carbonaceous microspheres was confirmed through SEM, FTIR, X-ray diffraction and Raman spectroscopy. Prepared samples were further used as a dispersed phase in electrorheological fluids, exhibiting outstanding electrorheological effects with yield stress over 100 Pa at an electric field strength 1.5 kV mm-1 and a particle concentration of only 5 wt%, significantly overcoming recent state-of-the-art findings. Impedance spectroscopy analysis showed clear interfacial polarization of this ER fluid with high dielectric relaxation strength and short relaxation time, which corresponded to increased conductivity of the particles when compared to pure cellulose. These novel carbonaceous particles prepared from renewable cellulose have further potential to be utilized in many other applications that demand conducting carbonaceous structures with high specific surface area (adsorption, catalyst, filtration, energy storage).


Subject(s)
Cellulose , Adsorption , Cellulose/chemistry , Electric Conductivity , Microspheres , X-Ray Diffraction
3.
Int J Mol Sci ; 23(10)2022 May 21.
Article in English | MEDLINE | ID: mdl-35628584

ABSTRACT

In this work, graphene oxide (GO) particles were modified with a nano-sized poly(butyl acrylate) (PBA) layer to improve the hydrophobicity of the GO and improve compatibility with PVDF. The improved hydrophobicity was elucidated using contact angle investigations, and exhibit nearly 0° for neat GO and 102° for GO-PBA. Then, the neat GO and GO-PBA particles were mixed with PVDF using a twin screw laboratory extruder. It was clearly shown that nano-sized PBA layer acts as plasticizer and shifts glass transition temperature from -38.7 °C for neat PVDF to 45.2 °C for PVDF/GO-PBA. Finally, the sensitivity to the vibrations of various frequencies was performed and the piezoelectric constant in the thickness mode, d33, was calculated and its electrical load independency were confirmed. Received values of the d33 were for neat PVDF 14.7 pC/N, for PVDF/GO 20.6 pC/N and for PVDF/GO-PBA 26.2 pC/N showing significant improvement of the vibration sensing and thus providing very promising systems for structural health monitoring and data harvesting.


Subject(s)
Polyvinyls , Vibration , Acrylates , Fluorocarbon Polymers , Graphite , Polyvinyls/chemistry
4.
Nanomaterials (Basel) ; 9(2)2019 Feb 24.
Article in English | MEDLINE | ID: mdl-30813501

ABSTRACT

In this study, a verified process of the "grafting from" approach using surface initiated atom transfer radical polymerization was applied for the modification of a graphene oxide (GO) surface. This approach provides simultaneous grafting of poly(2-(trimethylsilyloxy)ethyl methacrylate) (PHEMATMS) chains and a controllable reduction of the GO surface. This allows the fine tuning of its electrical conductivity, which is a crucial parameter for applications of such hybrid composite particles in electrorheological (ER) suspensions. The successful coating was confirmed by transmission electron microscopy and Fourier-transform infrared spectroscopy. The molecular characteristics of PHEMATMS were characterized by gel permeation chromatography. ER performance was elucidated using a rotational rheometer under various electric field strengths and a dielectric spectroscopy to demonstrate the direct impact of both the relaxation time and dielectric relaxation strength on the ER effectivity. Enhanced compatibility between the silicone oil and polymer-modified GO particles was investigated using contact angle measurements and visual sedimentation stability determination. It was clearly proven that the modification of the GO surface improved the ER capability of the system due to the tunable conductivity during the surface-initiated atom transfer radical polymerization (SI-ATRP) process and the enhanced compatibility of the GO particles, modified by polymer containing silyl structures, with silicone oil. These unique ER properties of this system appear very promising for future applications in the design of ER suspensions.

5.
RSC Adv ; 9(3): 1187-1198, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-35517996

ABSTRACT

Surface-initiated atom transfer radical polymerization (SI-ATRP) was used to modify graphene oxide (GO) particles with poly(butyl methacrylate) (PBMA) chains. This procedure facilitated the single-step fabrication of a hybrid material with tailored conductivity for the preparation of a suspension in silicone oil with enhanced sedimentation stability and improved electrorheological (ER) activity. PBMA was characterized using various techniques, such as gel permeation chromatography (GPC) and 1H NMR spectroscopy. Thermogravimetric analysis through on-line investigation of the Fourier transform infrared spectra, together with transmission electron microscopy, X-ray photoelectron microscopy, and atomic force microscopy, were successfully used to confirm GO surface modification. The ER performance was investigated using optical microscopy images and steady shear rheometry, and the mechanism of the internal chain-like structure formation was elucidated. The dielectric properties confirmed enhanced ER performance owing to an increase in relaxation strength to 1.36 and decrease in relaxation time to 5 × 10-3 s. The compatibility between GO and silicone oil was significantly influenced by covalently bonded PBMA polymer brushes on the GO surface, showing enhanced compatibility with silicone oil, which resulted in the considerably improved sedimentation stability. Furthermore, a controlled degree of reduction of the GO surface ensured that the suspension had improved ER properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...