Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Med Chem ; 166: 291-303, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30731398

ABSTRACT

Nerve growth factor receptor (NGFR), a member of kinase protein, is emerging as an important target for Glioblastoma (GBM) treatment. Overexpression of NGFR is observed in many metastatic cancers including GBM, promoting tumor migration and invasion. Hydrazones have been reported to effectively interact with receptor tyrosine kinases (RTKs). We report herein the synthesis of 23 arylhydrazones of active methylene compounds (AHAMCs) compounds and their anti-proliferative activity against GBM cell lines, LN229 and U87. Compound R234, 2-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)benzonitrile, was identified as the most active anti-neoplastic compound, with the IC50 value ranging 87 µM - 107 µM. Molecular docking simulations of the synthesized compounds into the active site of tyrosine receptor kinase A (TrkA), demonstrated a strong binding affinity with R234 and concurs well with the obtained biological results. R234 was found to be a negative regulator of PI3K/Akt/mTOR pathway and an enhancer of p53 expression. In addition, R234 treated GBM cells exhibited the downregulation of cyclins, cyclin-dependent kinases and other key molecules involved in cell cycle such as CCNE, E2F, CCND, CDK6, indicating that R234 induces cell cycle arrest at G1/S. R234 also exerted its apoptotic effects independent of caspase3/7 activity, in both cell lines. In U87 cells, R234 induced oxidative effects whereas LN229 cells annulled oxidative stress. The study thus concludes that R234, being a negative modulator of RTKs and cell cycle inhibitor, may represent a novel class of anti-GBM drugs.


Subject(s)
Glioblastoma/pathology , Nitriles/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Nitriles/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , S Phase Cell Cycle Checkpoints/drug effects
2.
Eur J Pharmacol ; 837: 105-116, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30179612

ABSTRACT

Glioblastoma remains the most common and aggressive type of malignant brain tumor among adults thus, considerable attention has been given to discovery of novel anti-tumor drugs for its treatment. This study reports the synthesis of a series of twelve novel decane-1,2-diol derivatives and evaluation of its anti-tumor activity in mammalian glioblastoma cell lines, U87 and LN229. Starting from decane-1,2-diol, several derivatives were prepared using a diversity oriented synthesis approach through which a small library composed of esters, silyl ethers, sulfonates, sulfites, sulfates, ketals, and phosphonates was built. The decane-1,2-diol ditosylated derivative, DBT, found to have higher cytotoxicity than the standard drug cisplatin, has IC50 value of 52 µM in U87 and 270 µM in LN229. Migration analysis of U87 cell line treated with the DBT indicated its ability to effectively suppress proliferation during initial hours of treatment and decrease anti-proliferative property over time. Additionally, DBT was assessed for its role in apoptosis, oxidative stress and caspase 3/7 activation in U87. Interestingly, our experiments indicated that its cytotoxicity is independent of Reactive oxygen species induced caspase 3/7 activity. The compound also exhibited caspase independent apoptosis activity in U87. DBT treatment led to G1/S cell cycle arrest and apoptosis induction of glioma cell lines. In addition, we identified 1533 genes with significant changes at the transcriptional level, in response to DBT. A molecular docking study accounting for the interaction of DBT with NMDA receptor disclosed several hydrogen bonds and charged residue interactions with 17 amino acids, which might be the basis of the DBT cytotoxicity observed. We conclude that this molecule exerts its cytotoxicity via caspase 3/7 independent pathways in glioblastoma cells. Concisely, simple decane-1,2-diol derivatives might serve as scaffolds for the development of effective anti-glioblastoma agents.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Alkanes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Brain Neoplasms/pathology , Caspase 3/physiology , Caspase 7/physiology , Cell Line, Tumor , Cell Proliferation/drug effects , Glioblastoma/pathology , Humans , Molecular Docking Simulation , Oxidative Stress/drug effects , Receptors, N-Methyl-D-Aspartate/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL