Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 12(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37508016

ABSTRACT

Morphine (MOR) is a commonly prescribed drug for the treatment of moderate to severe diabetic neuropathic pain (DNP). However, long-term MOR treatment is limited by morphine analgesic tolerance (MAT). The activation of microglial cells and the release of glia-derived proinflammatory cytokines are known to play an important role in the development of MAT. In this study, we aimed to investigate the effects of the dipeptidyl peptidase-4 inhibitor (DPP-4i) teneligliptin (TEN) on MOR-induced microglial cell activation and MAT in DNP rats. DNP was induced in four groups of male Wistar rats through a single intraperitoneal injection of streptozotocin (STZ) (50 mg/kg, freshly dissolved in 5 mmol/L citrate buffer, pH 4.5). Sham rats were administered with the vehicle. Seven days after STZ injection, all rats were implanted with an intrathecal (i.t) catheter connected to a mini-osmotic pump, divided into five groups, and infused with the following combinations: sham + saline (1 µL/h, i.t), DNP + saline (1 µL/h, i.t), DNP + MOR (15 µg/h, i.t), DNP + TEN (2 µg/h, i.t), and DNP + MOR (15 µg/h, i.t) + TEN (2 µg/h, i.t) for 7 days at a rate of 1 µL/h. The MAT was confirmed through the measurement of mechanical paw withdrawal threshold and tail-flick tests. The mRNA expression of neuroprotective proteins nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1) in the dorsal horn was evaluated by quantitative PCR (qPCR). Microglial cell activation and mononucleate cell infiltration in the spinal cord dorsal horn were assessed by immunofluorescence assay (IFA) and Western blotting (WB). The results showed that co-infusion of TEN with MOR significantly attenuated MAT in DNP rats through the restoration of neuroprotective proteins Nrf2 and HO-1 and suppression of microglial cell activation in the dorsal horn. Though TEN at a dose of 2 µg has mild antinociceptive effects, it is highly effective in limiting MAT.

2.
Heliyon ; 9(4): e15268, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37123896

ABSTRACT

Aim of the study: In this study, we investigated the therapeutic potential of vitamin D (VITD) in OA Wistar rats induced by anterior cruciate ligament transection combined with medial meniscectomy (ACLT + MMx). In ACLT + MMx-induced OA rats, pain severity, cartilage destruction, inflammatory cytokines, and MMPs were all measured. Materials and methods: ACLT + MMx methods were used to induce OA, and pain behavioral studies such as the weight bearing test and paw withdrawal test were performed while the knee width and body weights were also measured. Furthermore, Hematoxylin and Eosin (H&E) staining was used to determine knee histopathological studies, as well as OARSI scoring, cartilage thickness, cartilage width, and cartilage degradation scores. The enzyme-linked immunosorbent assay (ELISA) studies were used to check the serum levels of VITD, C-telopeptide of Type II collagen (CTX-II), and pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and anti-inflammatory cytokines interleukin-10 (IL-10), and MMPs (MMP-3, MMP-9, and MMP-13). Finally, the reverse transcription polymerase chain reaction (RT-PCR) test was used to determine the levels of MMPs, nuclear factor-kappa B (NF-κB), TNF-α, IL-6, and IL-10 in IL-1ß stimulated chondrocytes. Results: The oral VITD supplement significantly reduced OA pain, inflammation, cartilage destruction, and MMPs levels. Furthermore, serum VITD levels increased while CTX-II levels decreased, indicating that VITD reduced cartilage degradation effectively. Moreover, VITD supplementation reduced the expression of pro-inflammatory TNF-α, IL-1ß, and IL-6 cytokines while increasing the expression of anti-inflammatory IL-10. The elevation of MMPs after ACLT + MMx surgery contributed to articular cartilage destruction, which was reduced by VITD supplementation. Finally, VITD supplementation significantly reduces serum levels of MMPs, IL-1ß, TNF-α, and IL-6 while increasing IL-10 levels. Then, using the in-vitro cytotoxicity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) MTT assay, examine the cytotoxicity profile of VITD in rat chondrocytes after stimulated with IL-1ß, which shows no toxicity in the dose range of VITD 0-500 IU. Finally, RT-PCR studies in IL-1ß stimulated rat chondrocytes revealed that VITD (50, 100, and 500 IU) significantly reduced the mRNA levels of MMPs, NF-κB, TNF-α, and IL-6, while increasing IL-10 levels, indicating that VITD reduced chondrocyte destruction and overcame harsh conditions in a dose-dependent manner. Conclusion: Overall, the in vivo and in vitro findings show that VITD effectively reduces OA pain, inflammation, and chondrocyte destruction by lowering MMPs levels specifically.

3.
Antioxidants (Basel) ; 11(6)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35740105

ABSTRACT

The most common joint disease in the elderly is knee osteoarthritis (OA). It is distinguished by cartilage degradation, subchondral bone loss, and a decrease in joint space. We studied the effects of carnosine (CA) on knee OA in male Wistar rats. OA is induced by anterior cruciate ligament transection combined with medial meniscectomy (ACLT+MMx) method and in vitro studies are conducted in fibroblast-like synoviocyte cells (FLS). The pain was assessed using weight-bearing and paw-withdrawal tests. CA supplementation significantly reduced pain. The enzyme-linked immunosorbent assay (ELISA) method was used to detect inflammatory proteins in the blood and intra-articular synovial fluid (IASF), and CA reduced the levels of inflammatory proteins. Histopathological studies were performed on knee-tissue samples using toluidine blue and hematoxylin and eosin (H and E) assays. CA treatment improved synovial protection and decreased cartilage degradation while decreasing zonal depth lesions. Furthermore, Western blotting studies revealed that the CA-treated group activated nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase (HO-1) and reduced the expression of cyclooxygenase-2 (COX-2). FLS cells were isolated from the knee joints and treated with IL-1ß to stimulate the inflammatory response and increase reactive oxygen species (ROS). The matrix metalloproteinase protein (MMP's) levels (MMP-3, and MMP-13) were determined using the reverse transcription-polymerase chain reaction (RT-PCR), and CA treatment reduced the MMP's expression levels. When tested using the 2',7'-dicholorodihydrofluroscene diacetate (DCFDA) assay and the 5,5',6,6'-tetracholoro-1,1',3,3'-tertraethylbenzimidazolcarboc janine iodide (JC-1) assay in augmented ROS FLS cells, CA reduced the ROS levels and improved the mitochondrial membrane permeability. This study's investigation suggests that CA significantly alleviates knee OA both in vitro and in vivo.

4.
Front Pharmacol ; 13: 864088, 2022.
Article in English | MEDLINE | ID: mdl-35496279

ABSTRACT

Pre-diabetes and diabetes are growing threats to the modern world. Diabetes mellitus (DM) is associated with comorbidities such as hypertension (83.40%), obesity (90.49%), and dyslipidemia (93.43%), creating a substantial burden on patients and society. Reductive and oxidative (Redox) stress level imbalance and inflammation play an important role in DM progression. Various therapeutics have been investigated to treat these neuronal complications. Melatonin and dipeptidyl peptidase IV inhibitors (DPP-4i) are known to possess powerful antioxidant and anti-inflammatory properties and have garnered significant attention in the recent years. In this present review article, we have reviewed the recently published reports on the therapeutic efficiency of melatonin and DPP-4i in the treatment of DM. We summarized the efficacy of melatonin and DPP-4i in DM and associated complications of diabetic neuropathy (DNP) and neuropathic pain. Furthermore, we discussed the mechanisms of action and their efficacy in the alleviation of oxidative stress in DM.

5.
Antioxidants (Basel) ; 10(9)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34573072

ABSTRACT

Neuropathic pain (NP), is a chronic pain resulting from nerve injury, with limited treatment options. Teneligliptin (TEN) is a dipeptidyl peptidase-4 inhibitor (DPP-4i) approved to treat type 2 diabetes. DPP-4is prevent the degradation of the incretin hormone glucagon-like peptide 1 (GLP-1) and prolong its circulation. Apart from glycemic control, GLP-1 is known to have antinociceptive and anti-inflammatory effects. Herein, we investigated the antinociceptive properties of TEN on acute pain, and partial sciatic nerve transection (PSNT)-induced NP in Wistar rats. Seven days post PSNT, allodynia and hyperalgesia were confirmed as NP, and intrathecal (i.t) catheters were implanted and connected to an osmotic pump for the vehicle (1 µL/h) or TEN (5 µg/1 µL/h) or TEN (5 µg) + GLP-1R antagonist Exendin-3 (9-39) amide (EXE) 0.1 µg/1 µL/h infusion. The tail-flick response, mechanical allodynia, and thermal hyperalgesia were measured for 7 more days. On day 14, the dorsal horn was harvested and used for Western blotting and immunofluorescence assays. The results showed that TEN had mild antinociceptive effects against acute pain but remarkable analgesic effects against NP. Furthermore, co-infusion of GLP-1R antagonist EXE with TEN partially reversed allodynia but not tail-flick latency. Immunofluorescence examination of the spinal cord revealed that TEN decreased the immunoreactivity of glial fibrillary acidic protein (GFAP). Taken together, our findings suggest that TEN is efficient in attenuation of PSNT-induced NP. Hence, the pleiotropic effects of TEN open a new avenue for NP management.

6.
Antioxidants (Basel) ; 10(2)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33572871

ABSTRACT

Oxidative stress resulting from reactive oxygen species (ROS) is known to play a key role in numerous neurological disorders, including neuropathic pain. Morphine is one of the commonly used opioids for pain management. However, long-term administration of morphine results in morphine antinociceptive tolerance (MAT) through elevation of ROS and suppression of natural antioxidant defense mechanisms. Recently, mesoporous polydopamine (MPDA) nanoparticles (NPS) have been known to possess strong antioxidant properties. We speculated that morphine delivery through an antioxidant nanocarrier might be a reasonable strategy to alleviate MAT. MPDAs showed a high drug loading efficiency of ∼50%, which was much higher than conventional NPS. Spectral and in vitro studies suggest a superior ROS scavenging ability of NPS. Results from a rat neuropathic pain model demonstrate that MPDA-loaded morphine (MPDA@Mor) is efficient in minimizing MAT with prolonged analgesic effect and suppression of pro-inflammatory cytokines. Additionally, serum levels of liver enzymes and levels of endogenous antioxidants were measured in the liver. Treatment with free morphine resulted in elevated levels of liver enzymes and significantly lowered the activities of endogenous antioxidant enzymes in comparison with the control and MPDA@Mor-treated group. Histopathological examination of the liver revealed that MPDA@Mor can significantly reduce the hepatotoxic effects of morphine. Taken together, our current work will provide an important insight into the development of safe and effective nano-antioxidant platforms for neuropathic pain management.

7.
Mol Pharm ; 17(4): 1015-1027, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32142287

ABSTRACT

Neuropathic pain, resulting from the dysfunction of the peripheral and central nervous system, occurs in a variety of pathological conditions including trauma, diabetes, cancer, HIV, surgery, multiple sclerosis, ischemic attack, alcoholism, spinal cord damage, and many others. Despite the availability of various treatment strategies, the percentage of patients achieving adequate pain relief remains low. The clinical failure of most effective drugs is often not due to a lack of drug efficacy but due to the dose-limiting central nervous system (CNS) toxicity of the drugs that preclude dose escalation. There is a need for cross-disciplinary collaborations to meet these challenges. In this regard, the integration of nanotechnology with neuroscience is one of the most important fields. In recent years, promising preclinical research has been reported in this field. This review highlights the current challenges associated with conventional neuropathic pain treatments, the scope for nanomaterials in delivering drugs across the blood-brain barrier, and the state and prospects of nanomaterials for the management of neuropathic pain.


Subject(s)
Neuralgia/drug therapy , Pharmaceutical Preparations/administration & dosage , Animals , Blood-Brain Barrier/metabolism , Central Nervous System/drug effects , Humans , Nanomedicine/methods
8.
J Pain Res ; 12: 2473-2485, 2019.
Article in English | MEDLINE | ID: mdl-31496789

ABSTRACT

BACKGROUND: In recent years, several melatonin (MLT) receptor agonists have been approved by FDA for the treatment of sleep disorders and depression. Very few studies have shed light on their efficacy against neuropathic pain (NP). IIK-7 is an MT-2 agonist known to promote sleep. Whether IIK-7 suppresses NP has not been reported, and the signaling profile is unknown. OBJECTIVE: To investigate the effect of melatonin type 2 receptor agonist IIK-7 on partial sciatic nerve transection-induced NP in rats and elucidate the underlying molecular mechanisms. METHODS: NP was induced by the PSNT in the left leg of adult male Wistar rats. On post-transection day 7, rats were implanted with intrathecal (i.t) catheter connected to an infusion pump and divided in to four groups: sham-operated/vehicle, PSNT/vehicle, PSNT/0.5 µg/hr IIK-7 and PSNT/0.5 µg IIK-7/1 µg 4-p/hr. To test the MT-2 dependence on IIK-7 activity, the animals were implanted with a single i.t catheter and injected MT-2 antagonist 4-Phenyl-2-propionamidotetralin (4-p) 20 mins prior to IIK-7 injection on day 7 after PSNT. The antinociceptive response was measured using a mechanical paw withdrawal threshold. Activation of microglial cells and the expression of NP-associated proteins in the spinal cord dorsal horn was assessed by immunofluorescence assay (IFA) and Western blotting (WB). Reactive oxygen species (ROS) scavenging ability of IIK-7 was evaluated by using bone marrow-derived macrophages (BMDM). RESULTS: Treatment with the MT-2 agonist IIK-7 significantly alleviated PSNT-induced mechanical allodynia and glial activation along with the inhibition of P44/42 MAPK, HMGB-1, STAT3, iNOS and casp-3 proteins. CONCLUSION: IIK-7 attenuates NP through the suppression of glial activation and suppression of proteins involved in inflammation and apoptosis. MT-2 receptor agonists may establish a promising and unique therapeutic approach for the treatment of NP.

9.
Int J Nanomedicine ; 14: 10105-10117, 2019.
Article in English | MEDLINE | ID: mdl-31920306

ABSTRACT

BACKGROUND: Reactive oxygen species (ROS) induced oxidative stress is linked to numerous neurological diseases, including neuropathic pain. Natural ROS scavenging enzymes like superoxide dismutase (SOD) and catalase have been found to be efficient in alleviating neuropathic pain. However, their sensitivity towards extreme pH and a short half-life limit their efficacy in vivo. Manganese oxide nanoparticles (MONPs) are recently known to possess ROS scavenging properties. In this study, MONPs were examined for their therapeutic effect on neuropathic pain. METHODS: The MONPs were synthesized by a hydrothermal method. The synthesized MONPs were characterized by UV/Vis, TEM, SEM, FTIR, NTA and XRD. The biocompatibility of the nanoparticles is evaluated in neural cells using LDH assay. MONPs were evaluated for their antioxidant activity by DPPH assay. In addition, in vitro ROS scavenging properties were examined in bone marrow-derived macrophage (BMDM) cells using 2',7'-dichlorofluorescin diacetate (DCFDA) assay. To evaluate the in vivo efficacy of nanoparticles, neuropathic pain was induced in Wistar rats by partial sciatic nerve transection (PSNT). On post-transection days 14 to 18, rats were intrathecally injected with MONPs and paw withdrawal threshold was measured. The spinal cords were collected and processed for Western blotting and histological analysis. RESULTS: The synthesized MONPs were biocompatible and showed effective antioxidant activity against DPPH free radical scavenging. Further, the nanoparticles scavenged ROS efficiently in vitro in BMDM and their intrathecal administration significantly reduced mechanical allodynia as well as the expression of cyclooxygenase-2 (COX-2), an important mediator of chronic and inflammatory pain in the spinal dorsal horns of PSNT rats. CONCLUSION: As ROS play a significant role in neuropathic pain, we expect that MONPs could be a promising tool for the treatment of various inflammatory diseases and might also serve as a potential nanocarrier for the delivery of analgesics.


Subject(s)
Hyperalgesia/drug therapy , Manganese Compounds/therapeutic use , Nanoparticles/therapeutic use , Neuralgia/drug therapy , Neuralgia/etiology , Oxides/therapeutic use , Sciatic Nerve/injuries , Animals , Antioxidants/pharmacology , Bone Marrow Cells/cytology , Cell Death/drug effects , Cyclooxygenase 2/metabolism , Disease Models, Animal , Injections, Spinal , Macrophages/cytology , Macrophages/drug effects , Male , Manganese Compounds/administration & dosage , Mice , Nanoparticles/ultrastructure , Oxides/administration & dosage , Rats, Wistar , Reactive Oxygen Species/metabolism , Sciatic Nerve/metabolism
10.
J Formos Med Assoc ; 118(8): 1177-1186, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30316678

ABSTRACT

Melatonin (N-acetyl-5-methoxytryptamine), secreted by the pineal gland is known to perform multiple functions including, antioxidant, anti-hypertensive, anti-cancerous, immunomodulatory, sedative and tranquilizing functions. Melatonin is also known to be involved in the regulation of body mass index, control the gastrointestinal system and play an important role in cardioprotection, thermoregulation, and reproduction. Recently, several studies have reported the efficacy of Melatonin in treating various pain syndromes. The current paper reviews the studies on Melatonin and its analogs, particularly in Neuropathic pain. Here, we first briefly summarized research in preclinical studies showing the possible mechanisms through which Melatonin and its analogs induce analgesia in Neuropathic pain. Second, we reviewed research indicating the role of Melatonin in attenuating analgesic tolerance. Finally, we discussed the recent studies that reported novel Melatonin agonists, which were proven to be effective in treating Neuropathic pain.


Subject(s)
Analgesics/pharmacology , Melatonin/pharmacology , Neuralgia/drug therapy , Receptor, Melatonin, MT2/agonists , Animals , Drug Evaluation, Preclinical , Humans , Melatonin/physiology , Receptor, Melatonin, MT2/physiology
11.
J Photochem Photobiol B ; 169: 124-133, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28319867

ABSTRACT

The extensive impact of antibiotic resistance has led to the exploration of new anti-bacterial modalities. We designed copper impregnated mesoporous silica nanoparticles (Cu-MSN) with immobilizing silver nanoparticles (SNPs) to apply photodynamic inactivation (PDI) of antibiotic-resistant E. coli. SNPs were decorated over the Cu-MSN surfaces by coordination of silver ions on diamine-functionalized Cu-MSN and further reduced to silver nanoparticles with formalin. We demonstrate that silver is capable of sensitizing the gram-negative bacteria E. coli to a gram-positive specific phototherapeutic agent in vitro; thereby expanding curcumin's phototherapeutic spectrum. The mesoporous structure of Cu-MSN remains intact after the exterior decoration with silver nanoparticles and subsequent curcumin loading through an enhanced effect from copper metal-curcumin affinity interaction. The synthesis, as well as successful assembly of the functional nanomaterials, was confirmed by various physical characterization techniques. Curcumin is capable of producing high amounts of reactive oxygen species (ROS) under light irradiation, which can further improve the silver ion release kinetics for antibacterial activity. In addition, the positive charged modified surfaces of Cu-MSN facilitate antimicrobial response through electrostatic attractions towards negatively charged bacterial cell membranes. The antibacterial action of the synthesized nanocomposites can be activated through a synergistic mechanism of energy transfer of the absorbed light from SNP to curcumin.


Subject(s)
Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Phototherapy/standards , Radiation-Sensitizing Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Copper , Curcumin/therapeutic use , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/radiation effects , Drug Synergism , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/radiation effects , Light , Metal Nanoparticles/therapeutic use , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Phototherapy/methods , Radiation-Sensitizing Agents/chemical synthesis , Reactive Oxygen Species/radiation effects , Silicon Dioxide/chemistry , Silver
12.
J Mater Chem B ; 5(7): 1507-1517, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-32264641

ABSTRACT

The use of nanotechnology to overcome multidrug resistance (MDR) in cancer cells has been predominant. Herein, we report the conjugation of copper(ii)-doxorubicin complexes on the surfaces of layered double hydroxide nanoparticles (LDHs) along with ascorbic acid intercalation in the gallery space to demonstrate synergistic effects to conquer MDR. The pH-sensitive release of doxorubicin (Dox) and the sustained release of ascorbic acid (AA) generate high amounts of hydrogen peroxide intracellularly that concomitantly results in conversion to cytotoxic free radicals through a copper(ii)-catalyzed Fenton-like reaction. Therefore, the combination of the chemotherapeutic agent (Dox) and free radical attack can devastate the MDR for effective cancer treatment through the co-delivery system.

13.
Int J Mol Sci ; 16(9): 20943-68, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26340627

ABSTRACT

We designed a study for photodynamic therapy (PDT) using chitosan coated Mg-Al layered double hydroxide (LDH) nanoparticles as the delivery system. A Food and Drug Administration (FDA) approved near-infrared (NIR) fluorescent dye, indocyanine green (ICG) with photoactive properties was intercalated into amine modified LDH interlayers by ion-exchange. The efficient positively charged polymer (chitosan (CS)) coating was achieved by the cross linkage using surface amine groups modified on the LDH nanoparticle surface with glutaraldehyde as a spacer. The unique hybridization of organic-inorganic nanocomposites rendered more effective and successful photodynamic therapy due to the photosensitizer stabilization in the interlayer of LDH, which prevents the leaching and metabolization of the photosensitizer in the physiological conditions. The results indicated that the polymer coating and the number of polymer coats have a significant impact on the photo-toxicity of the nano-composites. The double layer chitosan coated LDH-NH2-ICG nanoparticles exhibited enhanced photo therapeutic effect compared with uncoated LDH-NH2-ICG and single layer chitosan-coated LDH-NH2-ICG due to the enhanced protection to photosensitizers against photo and thermal degradations. This new class of organic-inorganic hybrid nanocomposites can potentially serve as a platform for future non-invasive cancer diagnosis and therapy.


Subject(s)
Chitosan/chemistry , Hydroxides/chemistry , Indocyanine Green/chemistry , Light , Nanocomposites/chemistry , Photochemotherapy , Apoptosis , Cell Line , Cells, Cultured , Humans , In Vitro Techniques , Molecular Imaging , Photochemistry , Photochemotherapy/methods , Reactive Oxygen Species , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism , Spectroscopy, Near-Infrared
14.
J Colloid Interface Sci ; 458: 217-28, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26225492

ABSTRACT

Multiple layers of pH-sensitive enteric copolymers were coated over layered double hydroxide (LDH) nanoparticles for controllable drug release and improved solubility of hydrophobic drugs. The nano-sized LDH carriers significantly improved the accessibility of sulfasalazine molecules that have positively charged frameworks. In addition, the successful encapsulation of negatively charged enteric copolymers was achieved via electrostatic attractions. The multi-layered enteric polymer coating could potentially protect nanoparticle dissolution at gastric pH and accelerate the dissolution velocity, which would improve the drug bioavailability in the colon. Next, biological studies of this formulation indicated a highly protective effect from the scavenging of superoxide free radicals and diethyl maleate (DEM) induced lipid peroxidation, which are major cell signalling pathways for inflammation. The histological view of the liver and kidney sections revealed that the nanoformulation is safe and highly biocompatible. The animal studies conducted via paw inflammation induced by complete Freund's adjuvant (CFA) revealed that enteric-coated LDH-sulfasalazine nanoparticles provided a sustained release that maintained the sulfasalazine concentrations in a therapeutic window. Therefore, this nanoformulation exhibited preferential efficacy in reducing the CFA-induced inflammation especially at day 4.


Subject(s)
Drug Carriers/chemistry , Edema/drug therapy , Hydroxides/chemistry , Nanoparticles/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Biological Availability , Cell Line, Tumor , HT29 Cells , Humans , Inflammation/drug therapy , Mice , Polymethacrylic Acids/chemistry , Spectroscopy, Fourier Transform Infrared , Sulfasalazine/pharmacokinetics , Sulfasalazine/pharmacology , Sulfasalazine/therapeutic use
15.
Mol Pharm ; 12(7): 2289-304, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-25996616

ABSTRACT

An efficient approach for the antimicrobial agent delivery specifically at acidic pH has been proposed. At the outset, functionalized mesoporous nanoparticles (NPs) were examined to verify the success of synthesis while considering the structural properties by various characterizations. The NPs were immobilized with silver-indole-3 acetic acid hydrazide (IAAH-Ag) complexes via a pH-sensitive hydrazone bond, which functioned as a model drug. When the transitional metal complexes with IBN-4-IAAH-Ag were exposed to acidic pH (near pH 5.0), the silver ions were preferentially released (70%) in a controlled manner up to 12 h by pH-sensitive denial of hydrazone bonds. In contrary, a low drug release (about 25%) was seen in physiological buffer (pH 7.4) demonstrating the pH sensitive release of this drug. Furthermore, the antibacterial efficacy of this unique structured sample was tested against the planktonic cells and biofilms of Gram-positive and Gram-negative bacteria with field emission scanning electron microscope in turn measuring the growth curves, formation of lethal reactive oxygen species, protein leakage, and DNA damage. The synthesized pH-sensitive IAAH-Ag complex was found to have high antimicrobial efficacy against multidrug resistant clinical isolates both in planktonic and biofilm states. Going forward, the synthesized nanoconjugates proved a good in vivo efficacy in treating the bacterial infection of mice. These new metal complex-conjugated NPs through a pH-sensitive hydrazone bond opened up a new avenue for the design and synthesis of the next generation antibacterial agents, which would act as an alternative to antibiotics.


Subject(s)
Anti-Bacterial Agents/chemistry , Delayed-Action Preparations/chemistry , Hydrazones/chemistry , Indoleacetic Acids/chemistry , Metal Nanoparticles/chemistry , Silicon Dioxide/chemistry , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Biofilms/drug effects , Cell Line, Tumor , Delayed-Action Preparations/pharmacology , HT29 Cells , Humans , Hydrogen-Ion Concentration , Indoleacetic Acids/pharmacology , Silicon Dioxide/pharmacology , Silver/pharmacology
16.
Nanomaterials (Basel) ; 5(4): 2169-2191, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-28347114

ABSTRACT

To develop a carrier for use in enzyme prodrug therapy, Horseradish peroxidase (HRP) was immobilized onto mesoporous silica nanoparticles (IBN-4: Institute of Bioengineering and Nanotechnology), where the nanoparticle surfaces were functionalized with 3-aminopropyltrimethoxysilane and further conjugated with glutaraldehyde. Consequently, the enzymes could be stabilized in nanochannels through the formation of covalent imine bonds. This strategy was used to protect HRP from immune exclusion, degradation and denaturation under biological conditions. Furthermore, immobilization of HRP in the nanochannels of IBN-4 nanomaterials exhibited good functional stability upon repetitive use and long-term storage (60 days) at 4 °C. The generation of functionalized and HRP-immobilized nanomaterials was further verified using various characterization techniques. The possibility of using HRP-encapsulated IBN-4 materials in prodrug cancer therapy was also demonstrated by evaluating their ability to convert a prodrug (indole-3- acetic acid (IAA)) into cytotoxic radicals, which triggered tumor cell apoptosis in human colon carcinoma (HT-29 cell line) cells. A lactate dehydrogenase (LDH) assay revealed that cells could be exposed to the IBN-4 nanocomposites without damaging their membranes, confirming apoptotic cell death. In summary, we demonstrated the potential of utilizing large porous mesoporous silica nanomaterials (IBN-4) as enzyme carriers for prodrug therapy.

17.
J Mater Chem B ; 3(17): 3447-3458, 2015 May 07.
Article in English | MEDLINE | ID: mdl-32262227

ABSTRACT

To evaluate the role of charge in the nanoparticle distribution we modified the external surface of layered double hydroxide nanoparticles with various organic groups bearing different charges and further a near-infrared (NIR) fluorescent dye (Cy5.5) is conjugated in the layered structure to assess the biodistribution. The functionalized nanocomposites performed as highly efficient contrast agents since Cy5.5 molecule stabilization inside the layered structure can safeguard them from metabolization in the physiological environments. The cell viability, lactate dehydrogenase and hemolytic assays showed no cytotoxicity with an exceptionally low release of both lactate dehydrogenase and hemoglobin from the treated cells. The in vivo biodistribution results disclosed a high accumulation of positive amino-layered double hydroxides (LDHs) in the lungs. In contrast, there is a rapid clearance of negatively charged carboxylate-LDHs from blood flow by liver uptake. Interestingly neutral LDH-PEG5000 showed enhanced blood circulation time, without high fluorescent accumulation in the major organs. In vitro cellular uptake studies from flow cytometry are relevant to the interactions between the nanoparticle surfaces and various cell types and the data are relevant to effects observed for in vivo biodistribution. To further demonstrate that surface functionalization on LDH nanoparticles can promote targeted drug release, we further immobilized hydroxo-substituted cisplatin (CP) on carboxylate-modified LDHs by coordination bonding. Due to the ideal cleaving property of the carboxylate group the coordinated CP can be efficiently released by the increase of acidic proton and Cl- concentration in the endosomal environment. Functionalized LDHs can be successfully employed as targeted drug delivery systems. When the LDH-CP complex accumulate primarily in the targeted organ, the high positive charge on the framework of LDHs cause susceptibility to rapid endocytosis, which facilitates sustained drug release with minimal systemic toxicity providing the apt treatment in the targeted organ.

18.
Sci Technol Adv Mater ; 16(5): 054205, 2015 Oct.
Article in English | MEDLINE | ID: mdl-27877834

ABSTRACT

We designed a biodegradable nanocarrier of layered double hydroxide (LDH) for photodynamic therapy (PDT) based on the intercalation of a palladium porphyrin photosensitizer (PdTCPP) in the gallery of LDH for melanoma theragnosis. Physical and chemical characterizations have demonstrated the photosensitizer was stable in the layered structures. In addition, the synthesized nanocomposites rendered extremely efficacious therapy in the B16F10 melanoma cell line by improving the solubility of the hydrophobic PdTCPP photosensitizer. The detection of singlet oxygen generation under irradiation at the excitation wavelength of a 532 nm laser was indeed impressive. Furthermore, the in vivo results using a tumour xenograft model in mice indicated the apparent absence of body weight loss and relative organ weight variation to the liver and kidney demonstrated that the nanocomposites were biosafe with a significant reduction in tumour volume for the anti-cancer efficacy of PDT. This drug delivery system using the nanoparticle-photosensitizer hybrid has great potential in melanoma theragnosis.

19.
J Nanosci Nanotechnol ; 13(4): 2399-430, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23763117

ABSTRACT

The advent of Nanotechnology has paved a way for improved disease treatment strategies, the most noteworthy being the mesoporous silica nanoparticles (MSNs) which have gained much recent attention in the field of cancer therapy and its diagnosis. The flaws of the current-day strategies can be overcome by this superior technology through its targeting ability in delivering drugs and image able agents specifically to the tumor sites. MSNs have unique biocompatibility features, its high surface area which contributes in large amount of drug loading and its facility to monitor size and shape of the nanoparticles are few of the positives which makes this technology an enormous asset for the field of Nanotechnology. This review paper is structured in such a way wherein we initially have discussed about the synthesis methods and various functionalization approaches for MSN followed by the different methods used for targeting cancer cells and the latest advances in controlled drug release. Some of the highlights of this review are the biocompatibility of MSNs, in vivo results of MSNs on cancer therapy. This review paper also shortly discuss about combined cancer therapies to overcome the challenges in current-day cancer treatment. Finally, we converge briefly on the recent advancements in the use of hybrid MSNs for obtaining multiple functions.


Subject(s)
Biocompatible Materials , Nanoparticles , Neoplasms/diagnosis , Neoplasms/therapy , Silicon Dioxide , Drug Carriers , Drug Therapy, Combination , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...